一、解二次曲线问题常见错误分类剖析(论文文献综述)
施育凤[1](2021)在《初中数学易错点分析及应对策略 ——以方程与不等式为例》文中研究说明义务教育课程标准中强调“要培养学生各方面的数学知识和技能,以促进学生全面发展”。方程与不等式是初中数学知识中不可缺少的一部分,但在这部分内容的学习中,学生解题出错的现象时有发生,其中就有一些经常容易出错的点,这些易错点的反复出现会影响学生的能力发展,因此研究初中数学易错点具有重要意义。本研究以方程与不等式为例,采用文献分析法、访谈法、问卷调查法、测试法以及案例分析法研究初中数学易错点。通过访谈明确学生在方程与不等式中的易错点以及了解学生解题的心理活动,并为分析易错点出现的原因和提出相应应对策略提供依据;通过对测试结果的统计,从成绩等级的维度对易错点进行差异分析,并整理归纳出易错点错误类型;通过案例分析,从学生解题过程中找到易错原因;通过问卷调查,探讨分析认知负荷与易错点的关联。总体而言,本研究对易错点的分析主要从两个方面进行,一方面是从易错点材料本身来研究认知负荷对易错点的影响;另一方面是从研究对象的测试情况,分析整个解题过程中易错点出现的原因,并在此基础上提出相应的应对策略。经过研究发现:(1)学生易错点出错率最高的部分是不等式和分式方程。学生易错点错误类型可以归类为知识性错误和非知识性错误。知识性的错误主要有数学知识的错误、解题方法的错误、数学运算的错误;非知识性的错误主要是解题态度的错误、解题习惯的错误、解题心理的错误。(2)易错点在成绩等级维度上存在显着差异。(3)认知负荷与易错点出错率之间存在显着正相关关系。不同成绩等级的学生认知负荷不同,与测试成绩的相关性也不同,成绩等级为A、C和E的学生,其认知负荷与测试成绩没有相关关系;成绩等级为B和D的学生,其认知负荷与测试成绩有显着相关关系。(4)基于波利亚解题表,分别得出在“了解问题”、“拟定计划”、“实施计划”、“回顾”四个环节中的易错点错误原因。由研究结论得到的应对策略主要有两个方面,一是基于波利亚解题过程中的原因分析结果提出的应对策略,二是基于认知负荷理论结果给出的应对策略。
张嫌[2](2021)在《九年级学生函数模块解题错误纠正研究》文中指出函数是探究运动变化的主要工具,通过数学建模解决实际问题,在数学各领域都有举足轻重的地位,对学生核心素养的养成也是必不可少的。由于学生在初中阶段首次接触变量,对函数知识的理解比较困难,无论是资优生还是潜能生在解答函数相关题目时都容易出现解题错误,且订正效果不佳。出于上述原因,本文将ACT-R理论应用于教学实践,希望在函数模块解题错误纠正方面获得一些教学启示。本文主要从以下几个问题展开研究:在实际教学过程中九年级学生函数模块解题错误的现状是怎样的;九年级学生在函数模块的解题错误有哪些类型;基于ACT-R理论解题错误纠正教学策略是什么。为了回答上述问题,本文通过文献法获取解题错误纠正策略研究现状,分析ACT-R理论的内涵,深入挖掘ACT-R理论对教学实践中解题错误纠正的启示。通过问卷调查法了解九年级学生对解题错误的认识,学生、老师对解题错误分类的认识,学生产生解题错误的原因,同时获知教师处理解题错误的方式等现状,进而分析初中阶段函数模块常见解题错误类型,根据调查结果,本文将其分为知识性错误、策略性错误、逻辑性错误、无意识错误四类。通过具体示例对四种类型解题错误进行剖析,并结合ACT-R理论提出相应的解题错误订正教学策略:精致练习策略、熟能生巧策略、迁移与理解策略、检验反思策略。为检验提出策略的有效性,将上述四种策略与常规纠错方式对比,展开实验研究,得出该策略在实际应用过程中具有有效性,具体表现在:该策略对学生数学成绩的提高、同类型错误的减少、解题错误订正习惯的养成、题后反思能力的形成具有一定的帮助作用。
柏佳楠[3](2021)在《高中生一元二次不等式解题错误现状的调查研究》文中研究指明高中生在数学解题中常常伴随着解题错误现象的产生,学生在数学学习中发生数学解题错误是不可避免的,教师应当承认学生错误的合理性,并利用好学生的错误进行教学。对学生在解一元二次不等式中发生的错误进行研究,不仅能够对数学教师的教学提供指导,也能够切实帮助学生减少数学解题错误的发生。解一元二次不等式的内容是高中数学学习的重点和难点,它既是初中解一元一次不等式内容的延伸,也是对前面学习过的集合知识的巩固和运用,同时也为后面学习解分式不等式、含绝对值不等式、求函数的定义域和值域等内容做了铺垫。因此,这一内容在整个高中数学的学习中起到了承前启后的重要作用。本文通过调查分析高一学生在解一元二次不等式中出现的错误,主要研究以下三个基本问题:(1)高中生解一元二次不等式的常见错误类型有哪些?(2)导致学生解一元二次不等式错误的主要原因有哪些?(3)学生解一元二次不等式的错误矫正策略有哪些?本文在梳理和分析了相关已有研究的基础上,采用了试卷分析法和访谈法的研究方法,通过《高中生解一元二次不等式测试卷》和《高中生解一元二次不等式教师访谈提纲》的分析工具,分别对学生进行测试,对教师进行访谈。最后,本文得出以下研究结果:首先,对于高中生一元二次不等式解题错误的错误类型的研究结果如下:(1)高中生解一元二次不等式的常见错误类型的概率从高到低依次是:知识性错误、心理性错误、逻辑性错误,策略性错误;(2)学生的所有错误类型的发生几乎都伴随着知识性错误的发生。其次,导致高中生一元二次不等式解题错误的错误原因主要包括教师方面的原因以及学生自身方面的原因。教师方面的原因主要包括:教师教学观念以及教学方法的差异、教师纠错方式的不妥,以及教师对待学生的错误的态度等方面的原因;学生方面的原因主要包括:学生对数学基础知识掌握不牢固、学生解题过程逻辑混乱、学生缺少对错误的反思,以及学生解题心理不佳等原因。最后,减少学生一元二次不等式解题错误的错误矫正策略也包括了对教师的建议以及对学生自身的建议。对教师的建议主要包括:帮助学生构建好数学知识体系、及时纠正学生的错误、合理设置习题、注重对学生数学学习方法和数学思维的培养、利用好学生的错题资源进行教学,以及让学生自己发现并纠正错误。对学生的建议主要包括:注重对数学基础知识的理解、注重对数学错题的及时整理与深入反思、注重培养良好的解题心理,以及养成良好的数学学习习惯等等。
宋佳[4](2021)在《中国大陆与中国香港高中数学教科书比较研究》文中提出数学教科书是国家教育发展质量与水平的直观反映,是教授课程、传播知识、承载教学理念的重要文本。香港作为中国的特别行政区,既受传统文化熏陶又有国际视野,其基础教育成果显着,香港学生自1995年以来参加TIMSS与PISA测试成绩优异。因此研究大陆与香港数学教科书的异同,通过交流与碰撞,对两地数学教科书的编写、数学教育的发展有重要的参考价值与借鉴作用。本研究以两地课程指导文件为基准,以两地现行高中数学教科书——大陆人教版《数学A版(2019)》与香港牛津版《New Century Mathematics(Second Press)2014》为研究对象。在集合与逻辑、数与代数、图形与几何、统计与概率四领域中,分别从内容分布、广度与深度、呈现方式及数学文化等五维度进行比较研究。质性研究与量化研究相结合,首先统计了两版教科书在章、节和页数的内容分布情况,两版教科书的知识点数量及其呈现方式,用模型方法分别计算出内容广度与深度,再选取重点知识进行个案分析。其次,从教科书整体、章和节三层次对二者的编写体例与栏目设置进行比较。再次,从内容分布、主题分类、栏目设置、运用形式及表达方式等六个维度比较两版教科书中的数学文化。最后,利用SPSS对上述计算结果进行统计学检验。本文得到如下结论:1.内容分布:两版教科书的内容分布趋势均可用“大杂居,小聚居”来形容,即四个领域交叉分布于每本书,但在一本书中属于同一领域的章节是顺次编排的。2.人教版整体内容的相对广度与相对深度均大于牛津版,即人教版“广而深”,牛津版“窄而浅”。3.呈现方式:人教版注重例题分析功能、问题链驱动教学、强调数学核心素养、倡导探索课外信息技术软件、通过思维导图训练梳理能力。牛津版强调例题示范功能、善用反例教学、突出数学应用价值、利用信息技术助力课堂教学、通过表格整理渗透对比思维与归纳能力。4.数学文化:数学文化总量,牛津版远多于人教版。两版数学文化在主题分类与栏目设置的分布趋势类似。人教版对数学文化的整体运用水平高于牛津版。两版对数学文化的表达形式相似,均以文字表述为主。两版教科书各具鲜明的编写特色。人教版:1.注重培养学生阅读能力与写作能力。2.注重数学史的融入。3.注重培养学生探究与建模能力。牛津版:1.分册可拆卸,便于弹性使用教科书。2.兼顾差异性,照顾学生的不同学习需求。3.培养自主管理能力,提高终身学习意识。4.重视应用,渗透STEM教育思想。5.重视反例及归纳思想在教学中的作用。基于研究结论,对高中数学教科书编写提出如下建议:1.优化教科书的自学便利性,渗透终身学习理念。2.加强教科书的系统设计,注重学段衔接。3.弹性设置课程,灵活使用教科书。4.突出栏目设置的多样化与针对性,兼顾学生差异。5.提高数学教科书的社会价值与人文价值。6.加强国民教育,开拓国际视野。
李蓉[5](2020)在《初中生“方程与不等式”解题中的错误分析及对策研究 ——以甘肃省庆城县两所中学为例》文中研究指明“方程与不等式”是初中数学“数与代数”领域的核心内容,是刻画现实世界相等关系和不等关系的有效模型,也是实现“实际问题——数学问题——实际问题”这一过程转化的重要工具。为了解初中生“方程与不等式”模块的学习现状,以解题中出现的错误为载体,从错误类型、成因分析和教学对策三个方面展开研究,拟定了三个研究问题:在“方程与不等式”解题中,学生出现的错误有哪些类型?造成这些解题错误的主要原因是什么?基于上述的解题错误类型及归因分析,从教师和学生两个角度出发,在“教”与“学”的过程中可采取的对策有哪些?本研究选取了甘肃省庆阳市庆城县两所中学的374名九年级学生和部分数学教师作为研究对象,通过文献分析法、测试卷法、案例分析法、问卷法以及访谈法等多种方法收集数据,并进行整理与分析。根据测试卷的统计结果,以戴再平等学者的错误分类理论为基础,得出九年级学生在“方程与不等式”解题中出现的主要错误类型有五种:一是概念性质类错误:基本性质掌握不够;方程概念混淆不清;在数轴上表示不等式的解集时,混淆空心圈和实心点所表示的意义;对一元二次方程根的情况与根的判别式的关系模糊。二是运算类错误:法则不清,运用不当;“验根”步骤缺失;消元法的算理不清;符号意识薄弱;最终结果的表达形式不规范。三是策略方法类错误:不善于从反向思考;不能正确识别应用题类型;方程解法不够灵活。四是逻辑类错误:对含参数方程系数间的逻辑关系不清;确定数量关系受阻;题意理解偏差。五是心理类错误:刻板印象引起的思维惰性;忽视二次项系数不为0的隐含条件。通过学生问卷、师生访谈分析等发现知识结构、学习兴趣、数学能力、思维习惯和错误处理等主观因素是造成学生解题错误的主要原因,而家庭背景和教师教学等客观因素也是影响学生解题出错的原因,但影响较小。错误成因具体表现为:一是缺乏数学学科的学习兴趣;二是解题所需的知识储备欠缺;三是数学能力较为薄弱;四是解题习惯尚未养成;五是错误分析和利用的意识淡薄;六是心理素质不强。针对学生出现的解题错误类型,基于成因的探寻分析,笔者提出了如下相应的教学对策:一是提高数学学习兴趣;二是加强知识教学;三是提升数学能力;四是培养良好的解题习惯;五是重视错题的处理及利用;六是强化解题心理素质。
陈维彪[6](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中指出通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.
陈晨[7](2020)在《基于学生认知发展的初高中数学衔接教学的实践研究》文中进行了进一步梳理随着2014年上海高考的改革,数学文理分科已经成为了历史。由于课标、学情和学习环境等发生改变,学生进入高中之后数学学习往往会出现各种各样的不适应。如何做好初高中数学教学之间的过渡和衔接是笔者任教十年以来一直在思考和实践的课题,从高中学生认知发展水平的视角来审视数学初高中衔接教学的具体实施。深入探讨新高考3+3模式下数学文理不分的新考纲的大背景之下,该如何开展初高中数学衔接教学。基于此,笔者着力于研究以下三个问题:1.哪些内容适合进行初高中数学衔接教学?2.如何基于高中学生的认知发展水平,有效地进行初高中数学衔接教学?3.基于高中学生的认知发展的初高中数学衔接教学对学生高中数学学习是否有积极的促进?本研究首先采用了文献分析法,查阅与衔接教学相关的文献,了解国内外衔接教学的成果。其次,采用访谈法对教师进行访谈,采用调查测试法对学生进行问卷调查,调研高中学生实际的数学基础和认知水平,在此基础上对学生进行访谈,了解学生对初高中数学衔接教学的现实需求,将初高中数学衔接教学的模式细分为知识型衔接、前衔接、后衔接三种模式。第三,以笔者所在学校的两个班级为实验班,同等条件的另外两个班为对照班开展衔接教学,进行为期一年半的初高中数学衔接教学的实践研究。为验证初高中数学衔接教学对学生数学学习态度及学习能力是否有积极的促进教学效果,笔者除采用统一考试成绩外,还安排广泛化的限时测试采集系列数据。本研究获得以下结论:1.二次函数、三角比、圆、直角坐标系是四大适合进行衔接教学的内容;2.高中生的认知发展正处于形式运算阶段,知识衔接型的内容课前给予学案补充,前衔接型的内容把相关的初中知识体系和解题理念反复多次长期的进行教学,后衔接型的内容在知识教学之后,出现问题和偏差,再放入符合高中数学实际需求的理念;3.基于高中学生的认知发展的初高中数学衔接教学能帮助学生完善的数学认知结构,改善学生的学习方法和解题理念,长效的初高中数学衔接教学能促使学生更好地理解和掌握高中数学知识。
王璐璐[8](2020)在《高三学生解决数学含参问题教学策略研究》文中认为含参问题是指高中数学中在函数、三角、数列、不等式、参数方程等内容中含有参数的一类问题,是高考中的重要题型,同时也是高三阶段学生解决数学问题出现错误较多的问题。本文针对学生在含参问题中出现的解题错误,主要研究了以下两个问题:(1)高三学生解决含参问题的常见错误及原因有哪些?(2)在含参问题的教学中可以采取哪些有效的教学策略?本研究用到的研究方法有文献分析法、问卷调查法、试卷测试法、访谈法,设计了《高三学生解决含参问题调查问卷》和《高三含参问题测试卷》,通过学生的问卷调查、测试和访谈之间的相互补充,了解研究了高三学生在解决含参问题时主要的错误类型和错误出现的原因。结果表明,高三学生在解决函数、数列、不等式、圆锥曲线中的含参问题时错误较多,主要的错误类型为策略性错误、知识性错误、疏忽性错误、逻辑性错误,主要表现为面对问题没有思路、解题方法策略选择不当、分类不清、知识混淆、公式错用、不等价转化等。学生出现错误的原因与数学内容本身、数学学习方法有关,本文的最后针对这些错误提出了一些教学建议与策略。
成洁[9](2020)在《高中物理教学中数学内容对学生物理成绩提升的对策研究》文中研究表明数学和物理是两门密不可分的基础学科,是未来高素质人才必须掌握的,普通高中物理课程标准》在三维目标的“过程与方法”中,明确要求“在使学生掌握基础知识的同时,应关注物理学与数学之间的联系,重视培养学生应用数学知识处理物理问题的能力,发挥数学工具在物理学发展过程中的作用”,在高考物理考纲中,明确提出了要考查学生巧用数学知识与方法处理物理问题的能力,高考物理试题的解答离不开数学的应用,近几年,高考考试的命题方向更着重考察学生运用数学解决物理问题的能力。数学作为研究物理的一种重要手段,不仅为物理提供了一些物理量的基本概念和规律的表达式方程,而且为分析和解决具体物理问题提供了计算方式和实际操作。因此,我认为深入研究数学对高中生物理的学习影响是很有必要的。通过借鉴和学习前人对物理与数学关系的研究成果,本文首先是从物理学习的特点,数学和物理的关系和数学对物理学习的影响出发,探究了数学与物理的联系,从高中生的角度强调了在物理学习中数学思想与方法的重要性,接下来介绍了高中物理教材中涉及到的物理知识以及在近9年高考中物理试题涉及的数学知识与思想方法,进一步强调数学与物理的相关性,为了使本文更具有说服力,笔者利用软件统计了江西某两所中学高中普通班,重点班,奥赛班学生的物理与数学成绩并对其进行相关性统计分析,得到了数学成绩与物理成绩的正相关的结论,利用诊断性测验诊断数学内容在高中物理中对学生解题环节的影响,得出高中物理中常见的数学知识部分内容在高中物理中的应用情况并不乐观。学生难以运用数学知识解决物理问题是因为对物理中常用的数学知识没有清晰的掌握,所以本文接着介绍了高中物理常用的一些数学知识和思想方法,如向量、一次函数、二次函数、三角函数、微元法、几何法、图像法、数列等。利用诊断性测验诊断数学内容在高中物理中对学生解题环节的应用发现在高中物理中运用数学解决问题是具有一定负迁移的,导致这种困难的原因可以从两个层面来分析,一是教师层面,教师在教学中无意识斩断了物理和数学的联系,数学老师教数学,物理老师教物理,分工明确的思想深入人心,二是学生层面,数学与物理虽然息息相关,但在高中阶段,高中生数学思维定势对物理概念理解的存在负迁移,在解题环节还存在不等式关系负迁移、函数关系负迁移、极限法负迁移等。最后笔者结合全文,在文中的最后一节总结高中物理教学中渗透的数学的原则和策略,从教师和学生两个层面分别突破,并以初中升高中第一堂课为例,讲述在物理教学中如何渗透数学知识,说明作为教师,在物理教学中,要做到适当的补充需要的数学知识,在教学环节中要有相应的数学环节作为桥梁,帮助学生理解物理问题,作为学生,要加强自主学习能力,培养自己运用数学解决问题的能力,防止负迁移。
吴蓉[10](2020)在《初中生二次函数学习的认知障碍及教学对策研究》文中研究指明二次函数在初中数学课程中具有重要地位,在中考中也是必考内容,并且也是高中阶段学习的重要内容。可是初中生在二次函数的学习中存在较多困难,而导致困难的原因之一是学生自身存在的认知障碍。因此对初中生二次函数学习的认知障碍以及教学对策的研究,为提高二次函数教学效果,促进学生掌握二次函数相关知识具有重要意义。本文以初中生二次函数学习的认知障碍为研究内容,笔者首先通过广泛查阅相关的文献和资料,结合自己的一线教学经验,对认知障碍的研究以及二次函数教学的研究进行了文献综述,对加涅的认知-行为主义学习理论和皮亚杰认知发展理论进行了理论阐述,得到了理论的支持。接着笔者采用调查研究法,对所在学校九年级的8个班共325名同学进行了二次函数学习调查问卷和测试卷的调查研究,首先利用Excel对调查问卷的数据进行统计分析,初步得出初中生对二次函数的认知情况,再利用加涅的认知-行为主义学习理论和皮亚杰认知发展理论对测试卷的调查结果进行分析,最终得出关于初中生二次函数学习的认知障碍研究结论如下:对二次函数概念的认知中较多学生存在言语信息障碍,部分学生存在智慧技能障碍;对二次函数的图象与性质的认知中较多学生存在智慧技能障碍,较少学生存在言语信息障碍;对二次函数的应用的认知中大部分学生存在言语信息障碍、智慧技能障碍和认知策略障碍,其中智慧技能障碍和认知策略障碍较为严重;在二次函数的学习中大部分学生存在情感障碍。最后基于初中生二次函数学习的认知障碍并结合教学实际,笔者提出外化思维、“多视角”化的问题表征,情景教学法,数形结合以及多媒体教学法,冲突教学法,分析归纳教学法,变式教学法,注重培养学生元认知能力、认知策略迁移能力,加强学生反思总结的培养,依学情因材施教,加强培养学生良好的学习习惯,提高学生学习兴趣,建立自信心的教学策略,旨在消除初中生二次函数学习的认知障碍。
二、解二次曲线问题常见错误分类剖析(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、解二次曲线问题常见错误分类剖析(论文提纲范文)
(1)初中数学易错点分析及应对策略 ——以方程与不等式为例(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.1.1 课程标准的要求 |
1.1.2 数学学科的特点 |
1.1.3 解题过程中数学解答错误的时有发生 |
1.2 研究意义 |
1.2.1 理论意义 |
1.2.2 实际意义 |
1.3 研究目的 |
1.4 研究问题 |
1.5 相关概念界定 |
1.5.1 易错点 |
1.5.2 初中数学易错点 |
1.5.3 方程与不等式 |
2 文献综述 |
2.1 理论基础 |
2.1.1 波利亚解题理论 |
2.1.2 认知负荷理论 |
2.2 数学解答错误相关研究 |
2.2.1 国外数学解答错误研究现状 |
2.2.2 国内数学解答错误研究现状 |
2.3 初中数学易错点的相关研究 |
3 研究设计 |
3.1 研究思路与方法 |
3.1.1 研究思路 |
3.1.2 研究方法 |
3.2 研究对象与假设 |
3.2.1 研究对象 |
3.2.2 研究假设 |
3.3 研究工具 |
3.3.1 访谈提纲的编制 |
3.3.2 测试卷的编制 |
3.3.3 认知负荷问卷的编制 |
4 方程与不等式易错点测试结果分析 |
4.1 试卷回收情况 |
4.2 易错点成绩等级上的差异性分析 |
4.3 易错点与认知负荷的相关性分析 |
4.3.1 出错率与认知负荷的相关性分析 |
4.3.2 测试成绩与认知负荷的相关性分析 |
4.4 各知识模块中的易错点 |
4.4.1 一元一次方程 |
4.4.2 一元二次方程 |
4.4.3 分式方程 |
4.4.4 二元一次方程组 |
4.4.5 不等式组 |
4.5 易错点错误类型 |
4.5.1 知识性错误 |
4.5.2 非知识性错误 |
5 波利亚理论下的易错点错误原因分析 |
5.1 了解问题环节中的错误原因分析 |
5.1.1 题目理解不到位 |
5.1.2 审题态度不认真 |
5.1.3 定势的思维习惯 |
5.2 拟定计划环节中的错误原因分析 |
5.3 实行计划环节中的错误原因分析 |
5.3.1 概念不掌握,基础不扎实 |
5.3.2 计算能力弱,运算规则不熟练 |
5.3.3 思维不严密,解题片面性 |
5.3.4 粗心大意,导致细节出错 |
5.3.5 策略选择不当,使计算复杂化 |
5.3.6 理所当然,忽视隐藏条件 |
5.4 回顾环节中的错误原因分析 |
5.4.1 没有检查习惯 |
5.4.2 缺乏总结反思 |
6 应对策略 |
6.1 波利亚解题理论下的应对策略 |
6.1.1 教师层面 |
6.1.2 学生层面 |
6.1.3 波利亚解题表的应用举例 |
6.2 认知负荷理论下的应对策略 |
7 结论与展望 |
7.1 本研究的结论 |
7.2 本研究的不足 |
7.3 本研究的展望 |
参考文献 |
附录 |
致谢 |
(2)九年级学生函数模块解题错误纠正研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪言 |
1.1 研究背景 |
1.1.1 解题错误订正策略提出的现实性 |
1.1.2 解题错误存在的时代性与正常性 |
1.1.3 初中函数的重要性 |
1.2 核心名词界定 |
1.2.1 错误(error or mistake) |
1.2.2 错题(Wrong question or Wrong answer) |
1.2.3 数学解题错误(Math error) |
1.2.4 教学策略(Teaching Strategies) |
1.2.5 模型思想(Model idea) |
1.2.6 ACT-R理论(Adaptive Control Theory-Rational) |
1.2.7 调查研究(Survey Research) |
1.2.8 教育实验(Educational Experiment) |
1.3 研究的内容和意义 |
1.3.1 研究的问题 |
1.3.2 研究的内容 |
1.3.3 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构与说明 |
第2章 文献综述 |
2.1 文献收集 |
2.2 解题错误的相关研究 |
2.2.1 解题错误的归因 |
2.2.2 解题错误的分类 |
2.2.3 解题错误纠正策略研究现状 |
2.3 函数模块解题错误的相关研究 |
2.3.1 函数模块解题错误的原因及分类 |
2.3.2 函数模块解题错误的纠正策略 |
2.4 研究述评 |
第3章 研究理论与研究设计 |
3.1 研究理论——ACT-R理论 |
3.1.1 ACT-R理论的内容 |
3.1.2 ACT-R理论的教学启示 |
3.1.3 小结 |
3.2 研究设计 |
3.2.1 研究目的 |
3.2.2 研究对象 |
3.2.3 研究方法 |
3.2.4 研究工具及分析 |
3.2.5 研究的伦理 |
3.2.6 小结 |
第4章 九年级学生函数模块学习现状调查及分析 |
4.1 调查结果与数据分析 |
4.1.1 基本信息 |
4.1.2 学生对解题错误的认识分析 |
4.1.3 学生对解题错误分类的认识分析 |
4.1.4 学生在函数模块产生解题错误的原因分析 |
4.1.5 常规订正策略的现状分析 |
4.1.6 调查对象自述订正经历分析 |
4.1.7 调查对象提出的建议分析 |
4.2 调查的结论 |
第5章 函数模块解题错误的分类及具体体现 |
5.1 函数模块典型错误来源 |
5.2 函数模块典型错误的分类与分析 |
5.2.1 知识性错误 |
5.2.2 逻辑性错误 |
5.2.3 策略性错误 |
5.2.4 无意识错误 |
5.3 小结 |
第6章 基于ACT-R理论,函数模块解题错误纠正教学策略提出与检测 |
6.1 教学策略的提出 |
6.1.1 知识性错误——精致练习策略 |
6.1.2 逻辑性错误——熟能生巧策略 |
6.1.3 策略性错误——迁移与理解策略 |
6.1.4 无意识错误——检验反思策略 |
6.2 实验目的与设计 |
6.2.1 实验目的 |
6.2.2 实验设计 |
6.3 实验的过程 |
6.4 实验的结果与分析 |
6.4.1 教学策略对学生数学成绩的影响及分析 |
6.4.2 教学策略对每种错误类型错误率的影响分析 |
6.4.3 教学策略对学生养成订正习惯、形成题后反思能力的研究 |
6.5 小结 |
第7章 研究结论与思考 |
7.1 研究结论 |
7.2 研究的创新之处 |
7.3 研究的不足与反思 |
7.3.1 研究的不足之处 |
7.3.2 研究反思 |
7.4 研究展望 |
参考文献 |
附录A 初中生函数模块学习问卷 |
附录B 中测试卷:二次函数章节考试卷 |
附录C 后测试卷:函数模块章节考试卷 |
附录D 实验组对照组三次考试成绩 |
附录E 学生访谈提纲 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(3)高中生一元二次不等式解题错误现状的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 对于数学解题错误的基本认识 |
1.1.2 一元二次不等式在高中数学中的重要地位 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 有助于指导教师的教学实践 |
1.3.2 有助于发展学生的自我纠错能力 |
1.4 研究框架 |
第2章 文献综述 |
2.1 关于数学解题错误的研究现状 |
2.1.1 国外关于数学解题错误的研究 |
2.1.1.1 国外关于数学解题错误研究的历史进展 |
2.1.1.2 国外关于数学解题错误类型的研究 |
2.1.2 国内关于数学解题错误的研究 |
2.1.2.1 关于数学解题错误类型的研究 |
2.1.2.2 关于数学解题错误原因的研究 |
2.1.2.3 关于数学解题错误矫正策略的研究 |
2.2 关于一元二次不等式的研究现状 |
2.2.1 关于一元二次不等式的研究 |
2.2.2 关于一元二次不等式的解题错误的研究 |
第3章 研究设计 |
3.1 研究对象 |
3.2 研究方法 |
3.2.1 试卷分析法 |
3.2.2 访谈法 |
3.3 分析框架 |
3.3.1 知识性错误 |
3.3.2 逻辑性错误 |
3.3.3 策略性错误 |
3.3.4 心理性错误 |
3.4 研究工具 |
3.4.1 《高中生解一元二次不等式测试卷》 |
3.4.2 《高中生解一元二次不等式教师访谈提纲》 |
第4章 高中生解一元二次不等式错误的调查与分析 |
4.1 数学教师对学生解题错误的认识 |
4.2 一元二次不等式解题错误类型的分析框架 |
4.3 高中生数学解题错误类型统计分析 |
4.3.1 高中生解一元二次不等式错误类型统计与分析 |
4.3.2 高中生解一元二次不等式错误类型总结 |
第5章 高中生解一元二次不等式的错误原因分析 |
5.1 教师方面的原因 |
5.1.1 教师教学观念以及教学方法的差异 |
5.1.2 教师纠错方式的不妥 |
5.1.3 教师对待学生的错误的态度 |
5.2 学生自身的原因 |
5.2.1 学生对数学基础知识掌握不牢固 |
5.2.2 学生解题过程逻辑混乱 |
5.2.3 学生缺少对错误的反思 |
5.2.4 学生解题心理不佳 |
第6章 高中生解一元二次不等式的错误矫正策略 |
6.1 对教师教学的建议 |
6.1.1 帮助学生构建好数学知识体系 |
6.1.2 及时纠正学生的错误 |
6.1.3 合理设置习题 |
6.1.4 注重对学生数学学习方法和数学思维的培养 |
6.1.5 利用好学生的错题资源进行教学 |
6.1.6 让学生自己发现并纠正错误 |
6.2 对学生学习的建议 |
6.2.1 注重对数学基础知识的理解 |
6.2.2 注重对数学错题的及时整理与深入反思 |
6.2.3 注重培养良好的解题心理 |
6.2.4 养成良好的数学学习习惯 |
第7章 研究结论与反思 |
7.1 研究的结论 |
7.2 研究的不足与展望 |
7.2.1 研究的不足之处 |
7.2.2 研究展望 |
参考文献 |
附录A 高中生解一元二次不等式测试卷 |
附录B 高中生解一元二次不等式错误现状教师访谈提纲 |
致谢 |
(4)中国大陆与中国香港高中数学教科书比较研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 问题提出 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 研究意义 |
1.4 文献综述 |
1.4.1 数学课程标准比较研究 |
1.4.2 数学教科书研究 |
1.4.3 香港数学教育研究 |
1.4.4 数学文化研究现状 |
1.4.5 评述 |
1.5 研究方法与思路 |
1.5.1 研究方法 |
1.5.2 研究思路 |
1.6 创新之处 |
第2章 研究设计 |
2.1 研究对象 |
2.1.1 人教A版教科书概况 |
2.1.2 牛津版教科书概况 |
2.2 研究模型 |
2.2.1 内容广度模型 |
2.2.2 内容深度模型 |
2.2.3 数学文化研究维度 |
第3章 大陆课程标准与香港课程指引比较 |
3.1 数学课程作用的比较 |
3.2 大陆课程目标与香港课程宗旨比较 |
3.3 课程框架比较 |
3.4 知识点呈现顺序比较 |
第4章 两版教科书内容分布比较研究 |
4.1 “集合与逻辑”内容分布比较 |
4.1.1 人教版高中数学教科书 |
4.1.2 牛津版高中数学教科书 |
4.1.3 比较结果分析 |
4.2 “数与代数”领域内容分布比较 |
4.2.1 人教版高中数学教科书 |
4.2.2 牛津版高中数学教科书 |
4.2.3 比较结果分析 |
4.3 “图形与几何”领域内容分布比较 |
4.3.1 人教版高中数学教科书 |
4.3.2 牛津版高中数学教科书 |
4.3.3 比较结果分析 |
4.4 “统计与概率”领域内容分布比较 |
4.4.1 人教版高中数学教科书 |
4.4.2 牛津版高中数学教科书 |
4.4.3 比较结果分析 |
4.5 两地教科书内容分布总体比较 |
第5章 两版教科书内容广度与深度比较研究 |
5.1 “集合与逻辑”领域内容广度与深度比较 |
5.1.1 两版教科书内容广度与深度比较 |
5.1.2 两版教科书内容深度案例分析 |
5.2 “数与代数”领域内容广度与深度比较 |
5.2.1 两版教科书内容广度与深度 |
5.2.2 两版教科书内容深度案例分析 |
5.3 “图形与几何”领域内容广度与深度比较 |
5.3.1 两版教科书内容广度与深度 |
5.3.2 两版教科书内容深度案例分析 |
5.4 “统计与概率”内容广度与深度比较 |
5.4.1 两版教科书内容广度与深度 |
5.4.2 两版教科书内容深度案例分析 |
5.5 两版教科书整体广度与深度比较 |
5.5.1 整体内容广度比较 |
5.5.2 整体内容深度比较 |
第6章 两版教科书呈现方式比较研究 |
6.1 人教版教科书编排体例与栏目设置 |
6.1.1 整体编排体例 |
6.1.2 章的编排体例 |
6.1.3 节编排体例 |
6.2 牛津版教科书编排体例与栏目设置 |
6.2.1 整体编排体例 |
6.2.2 章编排体例 |
6.2.3 节编排体例 |
第7章 两版教科书数学文化比较研究 |
7.1 数学文化内容分布比较 |
7.2 数学文化主题比较 |
7.2.1 数学史主题分类 |
7.2.2 其他数学文化主题分类 |
7.3 数学文化的栏目分布 |
7.4 数学文化的运用方式比较 |
7.4.1 数学史运用方式 |
7.4.2 其他数学文化运用方式 |
7.5 数学文化的表现形式比较 |
第8章 结论、建议与反思 |
8.1 结论 |
8.1.1 内容分布 |
8.1.2 内容广度与深度 |
8.1.3 编写体例与栏目设置 |
8.1.4 数学文化 |
8.1.5 两版教科书编写特色 |
8.2 建议 |
8.2.1 优化教科书的自学便利性,渗透终身学习理念 |
8.2.2 加强教科书的系统设计,注重学段衔接 |
8.2.3 弹性设置课程,灵活使用教科书 |
8.2.4 突出栏目设置的多样化与针对性,兼顾学生差异 |
8.2.5 注重数学教科书的社会价值与人文价值 |
8.2.6 加强国民教育,开拓国际视野 |
8.3 反思与展望 |
参考文献 |
附录 |
附录1 |
附录2 |
致谢 |
攻读硕士学位期间主要科研成果 |
(5)初中生“方程与不等式”解题中的错误分析及对策研究 ——以甘肃省庆城县两所中学为例(论文提纲范文)
摘要 |
abstract |
一、问题提出 |
(一)研究背景 |
1.新课程理念和核心素养——美好的时代愿景 |
2.教学实践的反思——不容乐观的现实 |
3.“方程与不等式”——“数与代数”的核心内容 |
(二)研究问题 |
(三)研究意义 |
(四)核心概念界定 |
1.方程与不等式 |
2.数学解题错误 |
二、文献综述 |
(一)数学解题错误相关研究 |
(二)“方程与不等式”相关问题研究 |
(三)文献评析 |
三、研究思路与方法 |
(一)研究思路 |
(二)研究对象 |
(三)研究方法 |
1.文献分析法 |
2.调查研究法 |
3.案例分析法 |
四、学生“方程与不等式”解题错误调查结果及分析 |
(一)“方程与不等式”测试总体情况分析 |
1.各章节得分比率均值 |
2.各题正确率与错误率 |
3.A、B两所中学学生测试成绩均值的差异检验 |
4.不同班级学生测试成绩均值的差异检验 |
5.不同性别学生测试成绩均值的差异检验 |
(二)“方程与不等式”解题中的错误类型 |
1.概念性质类错误 |
2.运算类错误 |
3.策略方法类错误 |
4.逻辑类错误 |
5.心理类错误 |
6.其它类错误 |
(三)“方程与不等式”解题错误成因分析 |
1.影响学生数学解题的主观因素 |
2.影响学生数学解题的客观因素 |
3.学生解题错误成因小结 |
五、提高学生“方程与不等式”解题质量的教学对策 |
(一)提高数学学习兴趣 |
(二)加强知识教学 |
(三)提升数学能力 |
(四)培养良好的解题习惯 |
(五)重视错题的处理及利用 |
(六)强化解题心理素质 |
六、研究结论与反思 |
(一)研究结论 |
(二)研究反思 |
参考文献 |
致谢 |
附录 |
附录一 九年级学生“方程与不等式”学习情况调查问卷 |
附录二 九年级学生“方程与不等式”测试卷 |
附录三 九年级学生“方程与不等式”学习情况的教师访谈提纲 |
(6)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 不等式学习的重要性 |
1.1.2 不等式教学中的困境 |
1.1.3 学习迁移理论在不等式中的作用 |
1.2 核心名词界定 |
1.2.1 教学 |
1.2.2 教学设计 |
1.2.3 解题 |
1.2.4 迁移 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 理论基础与文献综述 |
2.1 研究的理论基础 |
2.1.1 学习迁移的概念 |
2.1.2 迁移的分类 |
2.1.3 早期的迁移理论 |
2.1.4 现代的迁移理论 |
2.2 文献综述 |
2.2.1 文献搜集 |
2.2.2 不等式的研究现状 |
2.2.2.1 不等式教材的研究现状 |
2.2.2.2 不等式解题教学的研究现状 |
2.2.2.3 不等式教学策略的研究现状 |
2.2.3 学习迁移理论的在数学中的研究现状 |
2.2.4 不等式中的迁移的研究现状 |
2.2.5 文献评述 |
2.3 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.2.1 文献法 |
3.2.2 问卷调查法 |
3.2.3 访谈法 |
3.2.4 痕迹分析法 |
3.2.5 案例研究法 |
3.2.6 微型实验研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 研究的创新之处 |
3.6 小结 |
第4章 基于学习迁移理论的不等式教学现状调查 |
4.1 基于学习迁移理论的问卷分析 |
4.1.1 问卷设计 |
4.1.2 实施调查 |
4.1.3 问卷可靠性分析 |
4.1.4 学习迁移理论的问卷结果分析 |
4.1.4.1 学生学习一元一次不等式的迁移体会 |
4.1.4.2 学生对教师的迁移教学的感受 |
4.1.4.3 学生对迁移作用的观点 |
4.1.4.4 学生对解题中所涉及到迁移的体会 |
4.1.4.5 学生对数学内部及其他学科间的迁移的认识 |
4.2 基于学习迁移理论的访谈研究 |
4.2.1 访谈设计 |
4.2.2 实施访谈 |
4.2.3 访谈结果及分析 |
4.2.3.1 教师访谈记录 |
4.2.3.2 教师访谈分析 |
4.2.3.3 学生访谈记录 |
4.2.3.4 学生访谈分析 |
4.3 基于学习迁移理论的调查结论 |
4.4 小结 |
第5章 学习迁移理论在不等式教学中的应用 |
5.1 新、旧课标的不等式对比分析 |
5.1.1 内容方面 |
5.1.2 要求方面 |
5.2 不等式中的迁移 |
5.2.1 不等式知识中的迁移 |
5.2.1.1 不等关系与不等式中的迁移 |
5.2.1.2 一元二次不等式及其解法中的迁移 |
5.2.1.3 基本不等式中的迁移 |
5.2.1.4 教材其他内容的迁移 |
5.2.2 数学文化中的迁移 |
5.2.3 思想方法的迁移 |
5.3 基于学习迁移理论的不等式教学目的 |
5.4 基于学习迁移理论的不等式教学原则 |
5.5 基于学习迁移理论的不等式教学流程 |
5.6 基于学习迁移理论的不等式教学案例 |
5.6.1 实验班、对照班的选择 |
5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例 |
5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想 |
5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计 |
5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈 |
5.6.3 基于学习迁移理论的“基本不等式”的案例 |
5.6.3.1 基于学习迁移理论的基本不等式教学设计构想 |
5.6.3.2 基于学习迁移理论的基本不等式教学设计 |
5.6.3.3 基于学习迁移理论的基本不等式的教学访谈 |
5.6.4 迁移教学效果分析 |
5.6.4.1 实验班解题痕迹分析 |
5.6.4.2 第10周周测分析 |
5.7 小结 |
第6章 基于学习迁移理论的不等式教学建议 |
6.1 基于学习迁移理论的不等式教学建议 |
6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础 |
6.1.2 借鉴新教材,迁移拓展不等式知识 |
6.1.3 培养正迁移,纠正负迁移 |
6.1.4 精心组织教学活动,培养学生的迁移意识 |
6.1.5 重视变式训练,提高迁移能力 |
6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣 |
6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础 |
6.2 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.1.1 问卷和访谈调查分析的结果 |
7.1.2 迁移理论在不等式教学中的应用分析 |
7.1.3 不等式教学建议 |
7.2 研究的不足之处与展望 |
参考文献 |
附录A 基于学习迁移理论的调查问卷 |
附录B 学生访谈提纲 |
附录C 教师访谈提纲 |
附录D 后测题 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(7)基于学生认知发展的初高中数学衔接教学的实践研究(论文提纲范文)
摘要 |
Abstract |
第一章 前言 |
1.1 研究背景 |
1.1.1 课标要求 |
1.1.2 现实诉求 |
1.2 研究目的 |
1.3 研究意义 |
1.4 研究的问题 |
1.5 研究思路和方法 |
1.5.1 研究思路 |
1.5.2 研究方法 |
1.6 本研究的框架 |
第二章 文献综述、理论依据与概念界定 |
2.1 文献综述 |
2.1.1 国内外对衔接教学的研究 |
2.1.2 初高中数学衔接教学的分类 |
2.1.3 初高中数学衔接教学的设计 |
2.1.4 初高中数学衔接教学的评价 |
2.2 研究的理论依据 |
2.2.1 皮亚杰的认知发展理论 |
2.2.2 维果茨基的最近发展区理论 |
2.2.3 奥苏贝尔的学习迁移理论 |
2.3 关键概念界定 |
2.3.1 衔接的概念 |
2.3.2 知识型衔接 |
2.3.3 前衔接 |
2.3.4 后衔接 |
2.3.5 三种衔接模式对比 |
第三章 初高中数学衔接教学的调查研究 |
3.1 调查的目的和意义 |
3.2 调研对象 |
3.3 研究框架 |
3.4 学生问卷调查的基本情况 |
3.4.1 样本的选取 |
3.4.2 调查问卷的编制 |
3.4.3 问卷调查的具体实施及数据采集整理 |
3.4.4 调研结果分析 |
3.5 教师访谈 |
3.5.1 访谈的基本情况 |
3.5.2 访谈调查的结果分析 |
3.6 衔接内容的划分 |
3.6.1 知识衔接型的衔接内容 |
3.6.2 前衔接型的衔接内容 |
3.6.3 后衔接型的衔接内容 |
第四章 初高中数学衔接教学的具体展开 |
4.1 教学内容剖析 |
4.1.1 课程标准的要求 |
4.1.2 教材的趋势 |
4.2 学生情况分析 |
4.2.1 间接了解 |
4.2.2 直接了解 |
4.3 衔接教学的具体安排 |
4.3.1 知识衔接型衔接教学设计 |
4.3.2 前衔接型衔接教学设计 |
4.3.3 后衔接型衔接教学设计 |
4.4 教学效果评价 |
4.4.1 评价工具 |
4.4.2 学生原始成绩的比较 |
4.4.3 实验后学生成绩变化的比对 |
4.4.4 广泛的限时测试的设计 |
4.4.5 广泛的限时测试结果的对比 |
第五章 结论 |
5.1 研究结论 |
5.2 本文的创新之处 |
5.3 研究的局限性 |
5.4 今后课题的研究方向 |
参考文献 |
附录1 三个典型课例的教学设计 |
附录2 高中学生数学学情前测调查问卷 |
附录3 四个班的数学原始成绩 |
附录4 广泛的限时测试的具体安排 |
致谢 |
(8)高三学生解决数学含参问题教学策略研究(论文提纲范文)
摘要 |
ABSTRACT |
1.引言 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
2.相关文献综述 |
2.1 关于含参问题的研究综述 |
2.2 关于学生数学“错误”及“教学策略”的研究 |
2.2.1 国内学生数学“错误”及“教学对策”的相关研究 |
2.2.2 国外学生数学“错误”及“教学对策”的相关研究 |
2.3 文献综述结语 |
3.研究方法 |
3.1 研究的过程 |
3.1.1 查阅文献、明确研究问题、确定研究框架 |
3.1.2 主要研究阶段 |
3.1.3 完善阶段 |
3.2 研究对象的确定 |
3.3 资料、数据的收集 ce 方法 |
3.3.1 问卷调查 |
3.3.2 测试 |
3.3.3 访谈 |
4.高三学生解决含参问题问卷调查分析 |
4.1 问卷简介 |
4.2 调查时间 |
4.3 调查对象 |
4.4 调查结果统计与分析 |
5.高三学生解决含参问题测试分析 |
5.1 测试卷简介 |
5.2 测试对象与时间 |
5.3 测试结果分析 |
5.3.1 测试总体情况 |
5.3.2 不同类型问题错误分析及教学策略 |
6.数学含参问题的教学策略 |
6.1 提高第一次教学的有效性 |
6.2 注重思维方法培养 |
6.3 针对个体个别教学 |
6.4 树立学生解题信心 |
6.5 利用“错误”中的教学资源 |
6.6 培养学生自我纠错能力 |
7.研究的结论、不足与展望 |
7.1 研究结论 |
7.2 研究不足 |
7.3 研究展望 |
参考文献 |
附录一 《高三学生解决含参问题调查问卷》 |
附录二 《含参问题测试卷》 |
致谢 |
(9)高中物理教学中数学内容对学生物理成绩提升的对策研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.3 研究意义 |
第2章 理论综述 |
2.1 物理学习的特点 |
2.2 数学和物理的关系 |
2.3 数学对物理学习的影响 |
第3章 高中物理教学中的数学内容研究 |
3.1 研究1:数学内容在高中物理教材中呈现梳理 |
3.2 研究2:数学内容在高中物理高考中呈现梳理 |
3.3 研究3:数学成绩与高中物理成绩的相关性研究 |
3.4 研究4:数学成绩对高中物理成绩影响研究 |
第4章 利用数学内容促进学生物理成绩的案例探讨 |
4.1 高中物理中常见数学知识 |
4.2 高中物理中常见数学方法 |
第5章 利用数学内容促进高中生物理学习的策略 |
5.1 教师教学策略 |
5.2 学生学习策略 |
第6章 研究总结 |
参考文献 |
附录1:数学对高中物理影响试题诊断 |
附录2:初高中物理连接教案 |
致谢 |
(10)初中生二次函数学习的认知障碍及教学对策研究(论文提纲范文)
摘要 |
Abstract |
1.绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究方法 |
1.4 研究意义 |
2.文献综述 |
2.1 关于认知障碍的研究综述 |
2.2 关于数学认知障碍的研究现状 |
2.3 关于其他学科认知障碍的研究现状 |
2.4 关于认知障碍研究现状的分析 |
2.5 关于二次函数教学的研究现状 |
3.理论基础 |
3.1 加涅的学习分类理论 |
3.2 皮亚杰认知发展理论 |
4.二次函数学习的认知障碍调查与分析 |
4.1 调查的设计与实施 |
4.2 调查问卷的结果与分析 |
4.3 调查问卷结论 |
4.4 测试卷的调查结果与分析 |
4.5 研究结论 |
5.针对学生学习二次函数认知障碍的教学对策研究 |
5.1 消除言语信息障碍的策略 |
5.2 消除智慧技能障碍的策略 |
5.3 消除认知策略障碍的策略 |
5.4 消除情绪障碍的策略 |
6.反思与展望 |
参考文献 |
附录一 |
附录二 |
致谢 |
四、解二次曲线问题常见错误分类剖析(论文参考文献)
- [1]初中数学易错点分析及应对策略 ——以方程与不等式为例[D]. 施育凤. 大理大学, 2021(08)
- [2]九年级学生函数模块解题错误纠正研究[D]. 张嫌. 云南师范大学, 2021(08)
- [3]高中生一元二次不等式解题错误现状的调查研究[D]. 柏佳楠. 上海师范大学, 2021(07)
- [4]中国大陆与中国香港高中数学教科书比较研究[D]. 宋佳. 内蒙古师范大学, 2021(08)
- [5]初中生“方程与不等式”解题中的错误分析及对策研究 ——以甘肃省庆城县两所中学为例[D]. 李蓉. 西北师范大学, 2020(01)
- [6]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
- [7]基于学生认知发展的初高中数学衔接教学的实践研究[D]. 陈晨. 上海师范大学, 2020(07)
- [8]高三学生解决数学含参问题教学策略研究[D]. 王璐璐. 洛阳师范学院, 2020(07)
- [9]高中物理教学中数学内容对学生物理成绩提升的对策研究[D]. 成洁. 西南大学, 2020(01)
- [10]初中生二次函数学习的认知障碍及教学对策研究[D]. 吴蓉. 西南大学, 2020(01)