一、直流牵引电动机应用及设计(论文文献综述)
伍赛特[1](2021)在《机车电传动系统技术特点及未来发展趋势研究》文中研究说明介绍了机车电传动系统的组成、分类、相关技术特点及应用,重点对其未来发展趋势进行了研究。未来,机车电传动领域将广泛采用交流传动方式,并大力推进新型电力电子技术和车载微机控制技术的研发,同时也将建立机车技术开发平台,实现产品的标准化、系列化和模块化。针对电传动而开展的相关技术研究及工程试验将有力推动我国未来机车车辆技术的发展。
任相[2](2021)在《电传动内燃机车励磁控制系统的研究》文中认为如今随着电力机车的发展,内燃机车已经濒临淘汰的边缘,但是由于自备能源的特点,使其在铁路运输中存在一定价值,目前,运行的内燃机车数量为六千余量。电传动系统性能优劣直接影响内燃机车安全平稳的运行,内燃机车电传动系统包括主发励磁控制和辅发励磁控制两部分。本课题所研究的DF4和DF7型内燃机车生产于上世纪六十年代,现在主要用于调车机车和小运转机车,受限于当时电力电子技术水平,导致机车故障率高,不能满足人们要求,而如今电力电子技术发展迅速,因此采用先进电力电子技术对内燃机车励磁控制系统进行改进很有必要,使机车运行更加平稳和安全。本课题主要对内燃机车柴油发电机组和辅发励磁蓄电池充电电路进行研究。论文主要研究内容如下:(1)内燃机车作为铁路运输牵引动力来源,因此需要对内燃机车牵引特性进行分析,同时分析内燃机车能量流动和采用柴油机直驱的内燃机车牵引特性,引出直驱内燃机车牵引特性不满足内燃机车牵引特性,因此内燃机车必须采用传动装置。本课题研究对象是DF4和DF7系列内燃机车所采用的电力传动装置为交-直流传动,然后对电力传动结构采用的型号和参数进行介绍。最后建立内燃机车电机的数学模型,为后面励磁控制系统的研究提供基础。(2)针对电传动内燃机车在负载发生扰动下,转速会发生波动,致使柴油机功率与牵引发电机功率不匹配,导致机车运行不平稳。本文提出BP神经网络预测进行内燃机车转速控制,并对内燃机车调速系统进行数学建模,以及对目前内燃机车调速系统所采用的控制算法进行分析。最后对BP神经网络预测的内燃机车转速控制系统搭建仿真模型并进行仿真实验,同时对目前所采用的经典算法进行实验对比,结果证明,基于BP神经网络预测控制的内燃机机车调速系统控制性能好,同时针对负载突变时响应快、超调量小和调整时间短。(3)完成内燃机车调速系统设计和改进后,需要对内燃机车励磁调节器进行设计。首先对恒功率励磁原理进行分析,然后根据其工作原理提出恒功率励磁控制策略,并对励磁调节系统进行数学建模。针对内燃机车是一个复杂的、非线性系统,设计出基于模糊自适应PID的励磁调节器,同时搭建内燃机车恒功率励磁控制系统仿真模型进行仿真实验,实验结果表明,本课题提出的模糊自适应PID励磁调节器对内燃机车恒功率励磁系统有较好的控制性能,同时使主发电机的输出端电压更加稳定。(4)针对内燃机车在辅发蓄电池充电中,蓄电池电量耗尽时进行充电导致充电电流过大现象,对内燃机车辅发励磁充电电路原理进行分析。结合Buck电路的特点设计出带Buck缓冲的辅助发电机励磁充电电路,并对控制算法改进为电压电流双环PI控制。通过对带Buck缓冲的辅助发电机励磁充电电路模型进行理论分析以及仿真实验,结果证明,带Buck缓冲的辅助发电机励磁充电电路可以将蓄电池充电电流控制在安全范围内。
孟凡顺[3](2020)在《内燃机车永磁同步电机牵引系统的改进》文中研究指明目前,国内基本采用直流励磁同步发电机作为牵引发电机,三相异步电机作为牵引电动机这种技术成熟的内燃交-直-交牵引传动形式。随着永磁技术的迅猛发展,具备了应用于内燃机车的技术准备且日趋成熟。现在电传动永磁同步牵引系统在城市轨道交通领域逐步得到应用,首台内燃永磁同步电机牵引系统也已经完成现场调试。本文以某企业小功率内燃机车永磁同步牵引传动系统为背景,针对现场调试过程中存在的一些问题,对牵引传动系统进行优化改进。目前主要存在如下两个问题:第一,在牵引系统主电路的选择上存在缺陷,企业原始设计采用不控整流,导致中间直流环节电压与柴油机转速近似正比,造成了当机车所需牵引功率较小的情况下,随着机车速度的提高,仍然需要提升柴油机转速以保证系统弱磁的进行,无法保证柴油机运行工况的稳定性和柴油机的经济性。第二,在机车起动阶段和机车速度变化较快时,存在柴油机憋停的现象。本文针对以上两个问题进行研究,对永磁同步牵引系统进行改进。首先从整车网络结构和牵引控制系统网络结构两部对永磁同步内燃机车网络控制系统进行研究。通过相关计算验证网络控制系统控制周期的合理性,利用仿真的手段分析时延对牵引系统网络控制实时性的影响;其次,将不控整流牵引系统改进为PWM脉冲整流牵引传动系统,并对发电系统控制器及控制策略进行设计,以保证与传统内燃机车相同,在司控器牵引手柄位一定(即牵引功率一定)时,柴油机转速和输出功率为恒定值,同时还可以保证在全速范围内电动机牵引系统弱磁的需求;然后,对永磁同步电动机牵引系统进行改进,采用合理的控制策略实现系统弱磁,使其具有较宽的调速范围且具有较好的动态特性,保证内燃机车的运行需求。最后,本文针对柴油机憋停问题,结合现场调试过程中存在直流母线过流故障的现象,对在低负荷情况下由于牵引电动机矢量控制性能不佳造成柴油机憋停的原因进行分析。即在起动阶段以及机车速度变化较快时,电动机牵引系统的调节特性较差,导致直流母线电流过流,从而造成在低负荷下柴油机输出功率急剧变化,最终导致柴油机憋停。利用Matlab/Simulink软件搭建改进后的永磁同步牵引传动系统仿真模型,验证改进后系统设计的合理性,并对造成柴油机憋停的原因进行验证。
付闯[4](2020)在《交直交电力牵引试验平台测控技术研究》文中提出随着轨道交通车辆的运行速度越来越快,电力牵引及其控制技术已经应用的十分广泛,列车的电力牵引系统和制动系统所需制定的标准也越来越高。为了使电力牵引试验平台能够对整车进行型式试验,包括牵引特性和电气制动特性的模拟,同时利用该平台能对牵引变流器、牵引电机进行开发,对电机特性进行研究测试,本课题对电力牵引系统性能试验平台的测控技术进行了研究,研究重点是电力牵引试验平台的控制和检测技术。本文提出了通用与各种驱动方式的电力牵引试验平台的总体架构,可以在此试验平台上实现对于车辆电力牵引和电气制动的静态工况和动态工况的模拟,并且采用开源方式建立通用的电力牵引试验平台的控制软件,实现对牵引制动过程静态工况和动态工况的模拟运行试验。实现各个试验所需的控制流程,并且能够按照要求进行数据采集及分析,可以满足大多数试验所需要求。本文首先对交直交电力牵引试验台进行构建,包括动力系统和测控系统,对两者分别进行需求分析,要保证能对电机制动牵引过程进行静态动态试验,分析所需测量的参数,设计出试验平台中控制指令的传输方式以及通信类型。再进行测控系统的具体设计,设计模拟量控制和串行总线通信控制,提出一套总体的控制方案。在此基础上,本文设计出开源式通用的测控软件,采用模块化设计方法,完成整个试验平台测控系统的主程序和各个模块的子程序,实现对试验平台的试验工况控制及性能数据采集。采用Lab VIEW编程完成整个试验平台测控软件的编写,最后在单轴小功率交直交电力牵引试验系统上对试验平台测控软件系统进行验证。
鲁培琳[5](2020)在《城市轨道交通牵引供电试验平台数据监控系统的设计与实现》文中研究指明随着我国城市轨道交通的快速发展,如何提高城轨装备的检测工作效率越来越重要。为加强牵引供电整流机组、储能装置、再生能量逆变回馈装置等城轨牵引供电装备的试验能力,本文在产品标准要求的基础上,分析试验电源使用需求及试验方法,模块化设计交、直流试验电源平台,采用虚拟仪器技术、数据可视化技术、数据库技术以及图像识别技术,设计开发了城市轨道交通牵引供电试验平台数据监控系统。本系统综合考虑各装备试验的测试需求,采用模块化设计思路,构建了交流电源测试模块、直流电源测试模块数据监控系统,基于LabVIEW开发软件,通过有限状态机实现对试验过程控制和监视;应用数据库技术实现试验数据的存储,动态更新,同步调用;基于图像识别技术设计数字识别功能,拓宽系统数据采集分析能力;采用数据可视化显示令数据更加直观表现。为验证系统的可行性,试验平台搭建完成后进行了现场测试,应用试验平台测试牵引整流机组、牵引变流器、牵引电机及再生制动能量地面利用系统等多种城市轨道交通牵引供电设备性能,试验结果表明:该监控系统操作流畅,状态监测准确,实现了既定的设计目标,验证了测控软件的交互性和稳定性。本文提出的包含分布式采集、存储、显示的系统软硬件设计方案,解决了城市轨道交通牵引供电产品电压制式复杂、系统结构不统一的问题,系统可以适应目前国内DC1500V及DC750V牵引供电系统、再生制动系统及车辆牵引系统的检测认证需求,极大的降低了试验准备的工作量及测量过程引入的不确定度,提高检测的可靠性。
马天银[6](2020)在《Matlab环境下交流机车变频调速过程仿真》文中研究指明列车牵引交流传动控制系统作为电气传动控制的一个独立分支,在交通运输牵引传动领域有着举足轻重的地位。它是一个非线性、变量多和强耦合的系统,能量传递通过变流器完成交-直-交的转换,将转换后的交流电传输到异步电动机中完成传动。整个过程它以牵引电动机为控制对象,通过开环或者闭环控制系统对牵引电动机转速参数的实时控制,来达到对驱动对象控制与调节的目的。实际传动系统的构建相当细致与复杂,并且影响运行稳定的因素众多,其中系统运行过程中产生的谐波对系统的稳定性影响比较严重,这些谐波主要来源是IGBT开关元件工作时导致的尖峰电压所产生。为了使系统运行的稳定性有所提高,本文针对谐波这一问题,主要开展了Matlab环境下交流机车变频调速过程仿真分析并做系统改进的工作,主要包括:研究了列车牵引交流系统运行的基本原理,了解其运行过程中会产生谐波的主要原因,然后在Matlab/simulink平台上搭建传动系统的仿真模型,完成仿真并分析结果;研究了滤波电路的相关原理,针对谐波问题对仿真电路进行改进,改进方案是在逆变器输出端的电路中加入设计的三相滤波器电路,并对改进后的模型进行仿真,再根据仿真实验结果与改进前的仿真结果进行对比分析。研究结果表明,在牵引传动系统中,变流器在完成交-直-交的能量转换时,由IGBT元件关断产生的谐波对系统运行的稳定性有明显影响,表现在异步电机的输出相电流与转矩的波形出现不稳定情况,说明系统的稳定性受谐波影响明显;系统中搭建的闭环反馈控制系统的仿真结果表明,可以通过将异步电机的转速作为反馈信号,进行一系列的转化输入到逆变器中完成反馈控制,反馈效果显着,达到实验预期。针对谐波问题的验证,在仿真系统中加入本文提出的改进方案,在变流器输出端加入设计好的三相滤波电路。对改进后的系统仿真进行调试运行,将改进前后的仿真结果对比发现,异步电机的输出转矩与电流的波形图变得相对稳定,说明与预设情况一致,系统运行的不稳定就是谐波问题导致,此方案提出合理,符合预设情况。因此提出的设计就有了理论支撑,并对实际有一定的理论指导意义,进而说明此方案对谐波问题可以得到很好的改善。
赵亦辉[7](2019)在《采煤机漏电保护器的研究与设计》文中指出采煤机是煤炭生产企业采煤装备的关键设备之一,与液压支架、刮板运输机被称“大三机”。“大三机”是煤炭采掘的核心设备,而以采煤机电控系统的可靠性,安全性为核心的课题是当今一些机构研究的重要内容。目前我国煤炭生产的装备有了飞速的发展,由于煤炭行业生产装备技术水平较其他行业的发展较为滞后,其装备的科技含量较低,设备运行的稳定性和安全性还有待提高。漏电保护是矿用电气设备的基本保护功能之一,是保证煤矿井下电气设备安全供电,防止人身触电的重要措施。在采煤机电气系统中增加漏电保护功能,并提高漏电保护性能就能在很大程度上提高采煤机和操作人员的安全。漏电故障是采煤机电气系统供电系统常见的故障类型,如果采用的漏电保护措施不当,就会引发煤矿井下重大的安全事故。采煤机是煤矿生产的主要装备,采煤机运行是否安全可靠,对井下工作人员的人身安全和煤炭企业的财产安全都至关重要。本文介绍了目前采煤机电控系统中漏电保护的基本原理,针对该系统中漏电保护的设计和检测方法存在的问题,提出改进后的漏电保护器设计方案。在该方案的基础上分别对采煤机带载漏电保护和无载漏电保护器进行升级改进,通过进一步的仿真分析验证了该方案的可行性,能够提高采煤机电控系统漏电保护的可靠性和安全性。本论文根据采煤机电控系统横向供电支路多,三级纵向供电的应用特点确定了漏电保护所采用的原理,结合系统中负载运行波动大,供电回路中谐波含量高的现状,漏电保护器对硬件和软件部分进行了系统的设计,并通过采煤机制造企业提供的试验平台,对装置的功能进行了检测,验证了本漏电保护器功能的可靠性,能够应用于现有的采煤机电控系统中。
潘宣伊[8](2019)在《基于VVVF的城轨车辆牵引传动控制技术及仿真研究》文中研究表明目前,城市轨道交通列车大都采用电能作为动力来源,通过交流牵引电机驱动列车运行,部分城市采用更先进的直线电机牵引。本文以多数城轨交通所选的交流牵引机车为载体进行研究。随着经济发展及城市的扩大化,大众对轨道交通的需求更加迫切,乘客对所乘车辆速度及舒适性的要求日益提高,为了兼顾行车速度和乘车舒适性,对车辆的结构设计及牵引电机的控制技术也提出了更高的要求。本文通过对交流牵引控制系统的控制技术进行分析及优化,确定交流牵引系统的择优控制方式。在交流牵引系统的调速过程中,每一个速度点都要对应一个合适的输出力矩,采用VVVF(Variable Voltage and Variable Frequency)变频调速系统进行牵引电机的转速控制可以达到这一要求。基于PWM方式的VVVF调速控制系统是一种开环控制方式,在牵引传动调速过程当中,可以保证定子频率变化不超过电动机颠覆点的要求,不影响车辆调速时牵引系统的稳定性,缩短车辆启动和制动、调速的动态响应时间。控制方法选择磁场定向矢量控制方法,在传统SPWM控制技术的基础上进行改进,加入SVPWM控制技术。SPWM技术以电源为出发点,只能生成一个可调频可调压的波形,当牵引电机参数变化后,VVVF控制系统无法进行实时调整,电机参数发生变化,输入电源不变,导致参数不匹配,影响电机调速稳定性。选用基于SVPWM方式的VVVF控制系统,可以随时检测控制系统当中,电气参数的振荡,当检测到系统电压,或者负载电压不在稳定状态下,基于SVPWM方式的VVVF控制系统会展现其闭环控制的控制特性,将车辆的速度以及牵引电机的输出力矩作为被调量,并作为闭环控制中的反馈信号,进行闭环控制,达到对系统的变化量做出快速的响应的目的。为了实现城轨车辆交流牵引系统的闭环控制,达到一种高性能运行状态,在控制系统的设计中,根据牵引系统的特点,可以设置不同的闭环控制反馈量,其中一种是将力矩作为反馈信号,力矩值的获得可以通过检测系统直接测定,或者结合系统特点进行估算,然后将这两种方法得到的力矩值输入到闭环控制环节的力矩调节器当中,通过差分运算,得到闭环控制系统中的偏差信号。还可以通过间接的测量与给定信号相关的物理量,如气隙磁通、定子电流,测量其实际值,将其作为反馈信号也可以达到控制牵引电机输出力矩的目的。城轨车辆交流牵引系统性能的优劣取决于牵引电机性能的优劣,牵引电机动态性能越好,调速系统调速时间和调速的稳定性越高。现阶段,城轨车辆牵引系统中的控制方式有两种,分别是采用矢量变化思想的磁场定向矢量控制和直接转矩控制。为了实现交流牵引系统在调速过程中的良好的电机牵引特性,本文将重点研究基于SVPWM调制技术的磁场定向矢量控制方式,判断此种控制方式是否能实现高性能的交流牵引调速。在证明基于SVPWM调制的磁场定向矢量控制方式的过程中,将会使用MATLAB/SIMULINK进行系统城轨车辆交流牵引系统仿真模型的建立,并进行验证性试验,通过分析仿真实验波形来验证矢量控制方式在城轨交流牵引系统中的可行性。
王豫[9](2019)在《城市轨道交通再生能馈技术及装置应用研究》文中提出全国城市地铁自2008年以来快速发展,行业上升迅猛。作为昆明的首条地铁线路-昆明轨道交通6号线工程在2011年开通。截止2019年昆明地铁已经开通运营1号线一期工程以及呈贡支线、2号线一期工程、3号线、6号线一期工程共计四条线路,开通线路长度达到88.7km,全部车站共计57个,当中换乘站2个。随着地铁线网的初步形成和运营线路增多,如何有效控制运营成本越来越成为管理核心。电能作为地铁各专业设备和系统的动力,研究如何更加绿色高效的利用电能。研究利用地铁交通的电能并进行升级,是当前最热的前沿和应用。本文以地铁供电系统的电客列车牵引和制动能耗为研究对象,谈论了采用交流电机电客列车的制动特性及再生制动电能的产生。因为城市地铁中站间距非常短,车站设置较为密集,列车在运行过程中存在频繁的动车与停车。在列车电制动时产生非常可观的再生制动能量,因为目前直流牵引设备中均采用二极管单向导通整流,列车再生制动产生的能量无法反馈到中压交流网侧进行二次使用,多采用制动电阻将电能转化为热能释放的形式,这样还加大了车站环境控制与通风设备的压力以及负荷消耗。针对再生制动能量的利用,本文根据目前国内外对再生制动电能三类9种使用方案进行了优缺点分析,最终根据昆明地铁3号线实际工程需要选择35k V中压系统回馈方案。通过MATLAB/Simulink软件进行了35k V中压系统回馈方案的仿真模型建立,通过仿真证明了电压控制对35k V中压系统的回馈效果,并且在回馈过程中的稳压效果良好,论证了该方案的功能和效果。本文最后根据昆明地铁3号线实际情况,对再生能馈设备工程的实际应用进行了总体设计研究,对再生能量回馈设备的技术需求和控制要求做了设计与分析。对最终工程实际应用效果进行数据分析,验证了35k V中压系统回馈方案的良好效果,以及运行过程中的一个案例分析,总结了再生能馈装置在运行使用方面的经验。
颜渐德[10](2019)在《工矿电力机车永磁同步电机驱动系统控制策略的研究》文中研究表明对于传统的工矿电力机车,直流串励电动机常被用来作为牵引电机,直流串励电动机通常采用串电阻调速或者斩波调速。近些年,三相异步电动机作为工矿电力机车的牵引电机在矿山有所应用,但异步电动机功率密度不高给工矿电力机车在空间设计时造成了困难,在维护时增加了难度,另外其功率因数低。由于永磁同步电机结构简单、效率高、功率密度高、安全性能好、系统可靠等特点非常适合于矿山企业对安全高效、环保和节能的要求,基于永磁同步电机的驱动系统必将在矿山牵引行业具有广阔的应用前景。本文根据工矿电力机车负载重且变化频繁、环境恶劣等特点,具体研究了以永磁同步电机为核心的驱动系统,围绕工矿电力机车运行过程中存在的关键问题,研究工作主要包括以下几个方面:(1)对于工矿电力机车的永磁同步电机驱动系统运行过程中,负载的波动会引起工矿电力机车的速度振荡,从而使得电机车的减速箱等机械结构的损坏机率大大的增加。本文研究了将滑模变结构控制与干扰观测器相结合的控制方法,利用基于指数趋近律的滑模控制器进一步提高电机驱动系统静态和动态跟踪性能,通过基于干扰观测器的反馈控制器来补偿负载干扰。针对滑模控制的抖振及调节时间过长问题,采用互补滑模变结构控制与干扰观测器相结合的控制方法,利用Sg和Sc相结合的互补滑模变结构控制器实现电机系统动、静态跟踪性能,抑制抖动,削弱超调等功能,通过基于干扰观测器的反馈控制器以补偿为系统速度测量的干扰、电流测量的干扰及负载变化的干扰,从而提高系统的快速响应和鲁棒性。(2)由于工矿电力机车运行现场环境的雾气,灰尘和振动等恶劣条件,速度传感器容易损坏;本文中永磁同步电机的负载变化很频繁,母线电压波动大,普通的观测转子位置方法观测的位置不准确。对此,本文采用高频注入法得到永磁同步电机的初始位置,然后采用干扰观测器得到估计速度,对速度进行积分得到永磁同步电机在运行时的转子位置。设计了一种新型线性矩阵不等式(LMI)干扰观测器结构,然后提出一种将LMI干扰观测器与反推控制相结合的控制方法,即根据永磁同步电机定子q轴电流iq*,在反推控制结构中引入干扰观测器重构的状态变量。通过线性矩阵不等式(LMI)计算出观测器增益,然后估算出永磁同步电机电流id与iq、转速、测量干扰d1与d2,在获悉干扰观测器的估计值之后,遵照反推控制策略,对电流控制器与速度控制器分别进行了设计。(3)针对工矿电力机车制动过程中产生丰富可观的再生制动能量的问题,对工矿电力机车的制动进行了数学分析,构建起电力机车能量回馈系统的数学模型。根据数学模型得到电力机车在制动时储能系统和能量回馈系统的瞬时吸收参考功率。通过对瞬时功率的跟踪控制来调节电力机车制动能量在储能单元与能量回馈单元之间的吸收功率比例,本文对再生制动能量提出了基于储能和能量回馈相结合系统的能量优化分配方案。通过大量的试验和现场工程应用表明,提出的基于干扰观测器的互补滑模控制,对负载的波动会引起工矿电力机车的速度振荡具有很好的抑制作用。工矿电力机车的系统结构更加合理,可靠更加高,机械冲击得到有效的减小,极大降低了机械磨损,工矿电力机车的安全性得到了提高,维护工作量大大降低。提出的基于干扰观测器的反推控制的估计与实际速度吻合度很好,有效解决了工矿电力机车采用永磁同步电动机驱动系统采用速度传感器所带来的问题。工矿电力机车制动过程中产生丰富可观的再生回馈能量,采用改进型控制策略的优化分配方案后,引起母线电压波动和再生制动能量回收率均在正常范围内。有效了克服储能装置能量密度低和能馈系统的抗冲击功率能量弱的缺陷,工矿电力机车的消耗的电能大大的减小。
二、直流牵引电动机应用及设计(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、直流牵引电动机应用及设计(论文提纲范文)
(1)机车电传动系统技术特点及未来发展趋势研究(论文提纲范文)
0 前言 |
1 机车电传动系统基本组成 |
2 机车电传动系统分类 |
2.1 按电能供给方式分类 |
2.2 按牵引电动机工作电流性质分类 |
3 直流电传动系统及其技术特点 |
3.1 直一直流电传动系统 |
3.2 交一直流电传动系统 |
3.3 交一直流传动电力机车工作原理 |
4 交流电传动系统及其技术特点 |
4.1 交流电传动系统及其历史发展 |
4.2 交一交流传动系统 |
4.3 交一直一交流传动系统 |
4.4 直一交流传动系统 |
4.3.1 向更大功率的通用型机车发展 |
4.3.2 使用高阻断能力的大功率可关断晶闸管(GTO)元件的变流装置 |
4.3.3 充分发挥机车的黏着牵引力 |
4.3.4 使用微机自动化系统 |
5 机车电传动技术的发展趋势 |
5.1 交流传动技术是重要发展方向 |
5.2 机车电传动的发展特点 |
5.2.1 采用交流传动方式 |
5.2.2 采用新型电力电子技术和车载微机控制技术 |
5.2.3 建立机车技术开发平台,实现产品的标准化、系列化和模块化 |
6 总结与展望 |
(2)电传动内燃机车励磁控制系统的研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 论文研究背景与意义 |
1.2 内燃机车电力传动方式发展 |
1.2.1 直-直流电力传动 |
1.2.2 交-直流电力传动 |
1.2.3 交-交流电力传动 |
1.3 内燃机车励磁控制系统发展 |
1.4 本文主要研究内容 |
2 内燃机车牵引性能分析及电力传动结构数学建模 |
2.1 内燃机车牵引特性分析 |
2.2 内燃机车电力传动结构 |
2.2.1 柴油机 |
2.2.2 主发电机 |
2.2.3 整流器 |
2.2.4 牵引电动机 |
2.2.5 启动发电机 |
2.3 内燃机车电机数学建模 |
2.4 本章小结 |
3 内燃机车调速系统设计 |
3.1 调速系统原理和数学模型 |
3.1.1 调速系统原理 |
3.1.2 调速系统数学模型 |
3.2 调速控制器算法 |
3.3 调速控制器的算法改进 |
3.3.1 模型预测控制算法 |
3.3.2 BP神经网络算法 |
3.3.3 BP神经网络预测控制算法 |
3.4 调速控制系统仿真 |
3.5 本章小结 |
4 内燃机车恒功率励磁控制系统设计 |
4.1 恒功率励磁原理 |
4.1.1 牵引发电机的理想外特性 |
4.1.2 牵引发电机的自然外特性 |
4.2 恒功率励磁控制系统的设计 |
4.2.1 励磁控制系统作用 |
4.2.2 励磁控制系统工作原理 |
4.2.3 恒功率励磁控制策略及数学建模 |
4.3 恒功率励磁调节器的算法改进 |
4.3.1 模糊控制 |
4.3.2 模糊自适应PID励磁调节器设计 |
4.4 恒功率励磁控制系统仿真 |
4.5 本章小结 |
5 内燃机车辅发励磁充电电路设计 |
5.1 充电电路控制及原理 |
5.1.1 PWM产生原理 |
5.1.2 充电电路原理 |
5.2 充电电路设计及改进 |
5.2.1 电路结构改进 |
5.2.2 改进电路结构理论推导 |
5.3 带Buck缓冲的辅助发电机励磁充电电路系统建模 |
5.3.1 控制信号产生算法 |
5.3.2 软件控制流程 |
5.4 仿真实验 |
5.4.1 带Buck缓冲的辅助发电机励磁充电电路模型 |
5.4.2 仿真实验 |
5.5 本章小结 |
结论 |
致谢 |
参考文献 |
攻读学位期间的研究成果 |
(3)内燃机车永磁同步电机牵引系统的改进(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题研究的背景和意义 |
1.2 轨道车辆永磁同步牵引系统研究现状 |
1.2.1 永磁同步电机及其控制技术发展现状 |
1.2.2 永磁同步牵引系统国内外研究现状 |
1.2.3 永磁同步牵引系统的特点 |
1.3 轨道车辆网络控制系统研究现状 |
1.3.1 国内外研究现状 |
1.3.2 CAN总线研究现状 |
1.4 本文主要研究内容与工作安排 |
本章小结 |
第二章 内燃机车牵引系统网络控制的实时性分析 |
2.1 内燃机车牵引系统动力性能基本要求及牵引特性曲线 |
2.1.1 内燃机车牵引系统动力性能的基本要求 |
2.1.2 内燃机车永磁同步牵引系统主电路形式 |
2.1.3 内燃机车理想牵引特性曲线 |
2.2 永磁同步内燃机车网络控制系统架构 |
2.2.1 整车网络结构 |
2.2.2 牵引控制系统网络结构 |
2.3 CAN总线技术 |
2.3.1 CAN总线技术概述 |
2.3.2 CAN帧类型及其结构 |
2.4 CANopen协议 |
2.4.1 通讯流程 |
2.4.2 对象字典建立 |
2.4.3 网络管理对象 |
2.4.4 服务数据对象 |
2.4.5 过程数据对象 |
2.4.6 管道数据流 |
2.5 永磁同步内燃机车网络控制系统实时性分析 |
2.5.1 内燃机车牵引特性控制过程 |
2.5.2 时延对内燃机车网络控制系统实时性的影响 |
2.5.3 网络控制系统控制周期的确定 |
本章小结 |
第三章 内燃机车永磁同步发电系统结构改进 |
3.1 交-直环节采用不控整流与PWM脉冲整流技术的发电系统 |
3.1.1 采用不控整流技术的发电系统 |
3.1.2 采用PWM脉冲整流技术发电系统的特点 |
3.2 内燃机车柴油机-永磁同步发电机组 |
3.2.1 柴油机主要技术参数 |
3.2.2 柴油机运行工况 |
3.2.3 永磁同步发电机主要技术参数 |
3.3 内燃机车永磁同步发电系统控制器设计 |
3.3.1 直流环节电压等级的选取 |
3.3.2 永磁同步发电系统PWM脉冲整流器工作原理 |
3.3.3 功率开关器件的选型计算 |
3.4 直流母线电容参数的确定 |
3.5 过压保护系统 |
3.6 改进后内燃机车永磁同步发电系统主电路工作原理 |
本章小结 |
第四章 内燃机车永磁同步发电系统控制策略 |
4.1 内燃机车永磁同步发电机工作特性 |
4.2 永磁同步电机数学模型 |
4.2.1 坐标变换基本原理 |
4.2.2 永磁同步发电机数学模型的建立 |
4.3 PWM整流器数学模型 |
4.4 基于矢量控制的稳压控制策略 |
4.4.1 基于转子磁场定向的矢量控制策略 |
4.4.2 i_(sd)=0控制策略 |
4.4.3 单位功率因数控制策略 |
4.4.4 复杂工况下的复合控制策略 |
4.5 内燃机车交-直-交系统直流环节电压控制器的设计 |
4.6 仿真模型的建立 |
4.7 仿真结果与分析 |
4.7.1 系统空载且柴油机怠速工况 |
4.7.2 恒定转速恒定负载工况 |
4.7.3 柴油机转速恒定突然加载/减载 |
4.7.4 负载恒定柴油机突然升速/降速工况 |
本章小结 |
第五章 机车永磁同步电动机控制方式的改进 |
5.1 内置式PMSM数学模型 |
5.2 SVPWM原理及其数字化实现 |
5.2.1 SVPWM基本原理 |
5.2.2 SVPWM的实现 |
5.3 永磁同步电机控制策略分析 |
5.3.1 电压极限椭圆和电流极限圆 |
5.3.2 弱磁控制原理分析 |
5.3.3 最大转矩电流比控制 |
5.3.4 负直轴电流补偿弱磁控制 |
5.4 永磁同步电机弱磁调速的整体方案 |
5.5 仿真验证与分析 |
5.5.1 仿真模型的建立 |
5.5.2 仿真结果与分析 |
本章小结 |
第六章 改进后的永磁同步牵引系统建模与仿真 |
6.1 改进后的牵引传动系统主电路结构 |
6.2 内燃机车永磁同步牵引系统控制方案 |
6.3 永磁同步牵引系统仿真模型的构建 |
6.4 仿真验证与分析 |
6.4.1 内燃机车在最高牵引手柄位下运行 |
6.4.2 内燃机车牵引系统网络实时性仿真分析 |
6.4.3 柴油机憋停问题仿真分析 |
6.4.4 造成柴油机憋停的原因及解决办法 |
本章小结 |
结论 |
展望 |
参考文献 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(4)交直交电力牵引试验平台测控技术研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题研究的背景及意义 |
1.2 交流传动系统的发展现状 |
1.2.1 交流传动方式类型 |
1.2.2 牵引变流器的形式 |
1.2.3 牵引电机的形式 |
1.3 国内外电力牵引传动试验平台发展现状 |
1.3.1 电力牵引传动试验平台的结构组成类别 |
1.3.2 现有的电力牵引传动试验平台试验方法 |
1.4 现场总线的发展现状 |
1.5 测控技术的发展现状 |
1.6 论文主要研究的内容 |
本章小结 |
第二章 交直交电力牵引试验平台构建方法 |
2.1 交直交电力牵引试验平台应满足的技术要求 |
2.2 电力牵引试验平台的结构设计 |
2.2.1 电力牵引试验平台的结构模式 |
2.2.2 电力牵引试验平台能量交换方式 |
2.3 电力牵引试验平台的组成 |
2.3.1 交直交电力牵引试验平台动力系统 |
2.3.2 交直交电力牵引试验平台测控系统 |
2.4 试验平台运行模式 |
本章小结 |
第三章 电力牵引试验平台测控系统的构建 |
3.1 交直交电力牵引试验平台测控系统应具备的功能 |
3.2 试验平台测控系统结构组成 |
3.2.1 陪试机控制系统 |
3.2.2 被试机控制系统 |
3.2.3 数据采集及分析系统 |
3.3 不同工况下试验平台控制方式 |
3.3.1 静态试验控制方式 |
3.3.2 动态试验控制方式 |
本章小结 |
第四章 交直交电力牵引试验平台运行控制 |
4.1 试验平台的控制指令及传输方式 |
4.2 交直交电力牵引试验平台运行控制系统结构 |
4.2.1 串行总线通信传输模式 |
4.2.2 模拟量传输模式 |
4.3 电力牵引试验平台运行控制接口 |
4.3.1 被试系统运行控制接口 |
4.3.2 陪试系统运行控制接口 |
4.4 电力牵引试验平台总线控制通信协议的制定 |
4.4.1 静态试验时数据流 |
4.4.2 动态试验时数据流 |
4.4.3 系统数据流的更新 |
4.4.4 CANbus总线通信协议及接口函数 |
4.4.5 以太网TCP/IP通信协议 |
4.4.6 以太网通信与CAN总线的比较 |
本章小结 |
第五章 交直交电力牵引试验平台测控软件系统构建 |
5.1 试验平台测控软件系统的功能 |
5.2 测控软件结构的总体设计 |
5.2.1 测控软件主程序结构 |
5.2.2 测控软件子程序结构 |
5.3 基于Lab VIEW的测控软件设计 |
5.3.1 基于Lab VIEW的试验平台测控软件子模块设计 |
5.3.2 基于Lab VIEW的试验平台测控软件主程序设计 |
5.4 单轴小功率电力牵引试验平台运行验证 |
5.4.1 电力牵引试验平台被试系统结构 |
5.4.2 陪试系统主回路的结构 |
5.4.3 测控系统结构 |
5.4.4 测控系统软件运行验证试验 |
本章小结 |
总结 |
参考文献 |
致谢 |
(5)城市轨道交通牵引供电试验平台数据监控系统的设计与实现(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1 绪论 |
1.1 课题研究背景 |
1.2 课题意义 |
1.3 国内外研究现状 |
1.3.1 城市轨道交通牵引供电装置应用现状 |
1.3.2 设备相关试验研究方法发展现状 |
1.4 主要研究内容 |
2 系统需求分析及总体方案设计 |
2.1 模块化牵引供电试验电源设计 |
2.1.1 牵引供电装备试验项目及电源模块划分 |
2.1.2 电源系统测试电路设计 |
2.1.3 牵引供电试验平台设计 |
2.2 电源系统测量需求分析 |
2.3 分布式数据监控系统总体方案设计 |
2.3.1 监控系统整体结构概述 |
2.3.2 监控系统功能设计 |
2.4 本章小结 |
3 分布式数据监控系统采集模块的设计与实现 |
3.1 数据监控系统硬件设备选型分析 |
3.1.1 电参数测量需求分析及设备选型 |
3.1.2 温度测量需求分析及设备选型 |
3.2 数据传输层选型及设计 |
3.2.1 基于总线技术的通信方式选择 |
3.2.2 数据监控系统的通信协议设计 |
3.3 数据采集功能的设计与实现 |
3.3.1 采集设备配置方法设计 |
3.3.2 数据采集实现方法 |
3.4 系统有限状态机设计 |
3.5 本章小结 |
4 数据管理及拓展功能的设计与实现 |
4.1 数据管理的设计与实现 |
4.1.1 数据存储层的设计 |
4.1.2 数据库存储程序设计 |
4.1.3 数据查询功能设计 |
4.1.4 数据导出功能设计 |
4.2 基于数据可视化显示的功能应用与设计 |
4.2.1 数据可视化显示设计概述 |
4.2.2 一级显示实现方法与功能应用 |
4.2.3 二级显示实现方法与功能应用 |
4.3 图像处理、分析技术的应用与设计 |
4.3.1 图像处理、分析技术软件环境 |
4.3.2 图像采集实现方法 |
4.3.3 图像识别训练的实现 |
4.3.4 图像识别及数据库应用 |
4.4 本章小结 |
5 系统应用测试与功能验证 |
5.1 数据采集功能验证 |
5.2 温度上限报警功能验证 |
5.3 数据查询及导出功能验证 |
5.4 数据可视化显示功能验证 |
5.4.1 一级显示数据可视化功能验证 |
5.4.2 二级显示数据可视化功能验证 |
5.5 图像识别功能验证 |
5.6 试验结果验证 |
5.7 本章小结 |
总结和展望 |
参考文献 |
作者简历及攻读硕士学位期间取得的科研成果 |
学位论文数据集 |
(6)Matlab环境下交流机车变频调速过程仿真(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究意义 |
1.2 电力机车及交流传动系统的发展及现状 |
1.2.1 电力机车及交流传动系统的发展 |
1.2.2 电力机车及交流传动系统的国内外现状 |
1.2.3 电力机车及交流传动系统的发展趋势 |
1.3 研究内容和方法 |
2 变频调速系统的理论分析 |
2.1 异步牵引电机的调速方式分析 |
2.1.1 异步牵引电机基本原理 |
2.1.2 恒磁通调速原理分析 |
2.1.3 恒功率调速原理分析 |
2.2 三相异步电动机的矢量控制原理 |
2.3 牵引变流器工作原理 |
2.3.1 四象限脉冲整流器原理分析 |
2.3.2 PWM控制技术的原理分析 |
2.3.3 中间直流储能环节的原理与计算 |
2.3.4 逆变器原理分析 |
2.4 本章小结 |
3 仿真系统的搭建与结果分析 |
3.1 软件介绍 |
3.2 驱动信号模块的组成与仿真搭建 |
3.2.1 闭环系统的基本组成与建立 |
3.2.2 PWM信号的生成 |
3.2.3 PWM信号的仿真运行结果 |
3.2.4 PWM信号结果分析 |
3.3 仿真系统的搭建与结果分析 |
3.3.1 仿真系统的搭建 |
3.3.2 仿真的运行结果 |
3.4 本章小结 |
4 滤波电路的设计与计算 |
4.1 滤波电路的原理分析 |
4.2 滤波电路的设计与计算 |
4.3 本章小结 |
5 仿真模型的改进与仿真结果分析 |
5.1 改进模型的仿真结果 |
5.2 仿真运行结果分析 |
5.3 本章小结 |
总结 |
致谢 |
参考文献 |
(7)采煤机漏电保护器的研究与设计(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 研究意义 |
1.3 国内外的研究现状和发展趋势 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 当前研究存在的问题 |
1.5 研究的内容与方法 |
2 采煤机电气系统供电网络与漏电原理分析 |
2.1 采煤机基本结构的介绍 |
2.2 采煤机电控箱基本结构的介绍 |
2.3 采煤机电气系统主回路供电网络的设计 |
2.3.1 截割电机和破碎电机控制回路 |
2.3.2 泵电机控制回路 |
2.3.3 牵引控制回路 |
2.4 采煤机电气系统供电网路漏电分析 |
2.4.1 井下供电系统 |
2.4.2 采煤机电气供电网路中漏电原理分析 |
2.5 本章小结 |
3 电气系统选择性漏电保护 |
3.1 对漏电保护的要求 |
3.2 选择性漏电保护原理 |
3.2.1 漏电保护的选择性 |
3.2.2 附加直流电源的保护原理 |
3.2.3 零序电压的保护原理 |
3.2.4 零序电流的保护原理 |
3.2.5 零序电流方向保护原理 |
3.3 漏电判断原理 |
3.4 本章小结 |
4 采煤机漏电保护装置的设计 |
4.1 采煤机电气系统选漏现存的问题 |
4.2 采煤机现有漏电保护方法分析 |
4.3 采煤机漏电保护器的结构设计 |
4.4 采煤机漏电保护系统的设计 |
4.5 采煤机漏电保护装置的硬件和软件设计 |
4.5.1 采煤机漏电保护装置的硬件设计 |
4.5.2 控制软件开发环境及程序设计 |
4.6 本章小结 |
5 实验及结果分析 |
5.1 概述 |
5.2 装置调试及实验 |
5.3 截割电动机漏电保护硬件电路实验 |
5.4 牵引电动机漏电保护硬件电路实验 |
5.5 本章小结 |
6 总结与展望 |
6.1 论文结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
(8)基于VVVF的城轨车辆牵引传动控制技术及仿真研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究的背景及意义 |
1.2 国内外研究现状 |
1.3 论文主要研究内容 |
第2章 城轨车辆交流牵引传动技术 |
2.1 城轨车辆交流牵引工作原理 |
2.2 城轨车辆交流牵引系统 |
2.2.1 城轨车辆直流供电系统 |
2.2.2 受流设备 |
2.2.3 城轨车辆变流技术 |
2.3 城轨车辆传动系统 |
2.3.1 交流牵引电机特性 |
2.3.2 交流牵引电机的选取 |
2.4 本章小结 |
第3章 城轨车辆牵引控制系统 |
3.1 轨道车辆牵引传动控制方法 |
3.2 交流牵引传动控制理论分析 |
3.3 牵引控制系统 |
3.3.1 变流器模块 |
3.3.2 牵引控制单元 |
3.4 本章小结 |
第4章 交流电动机的矢量控制 |
4.1 交流电动机矢量控制的构想 |
4.2 交流电动机的矢量变换 |
4.2.1 坐标变换 |
4.2.2 交流电机的数学模型 |
4.3 SVPWM技术 |
4.4 本章小结 |
第5章 矢量控制系统仿真模型的设计与实验 |
5.1 矢量控制系统仿真模型建立 |
5.1.1 整体模型 |
5.1.2 矢量控制系统仿真模型 |
5.2 仿真结果及分析 |
5.2.1 仿真结果 |
5.2.2 结果分析 |
结论与展望 |
参考文献 |
作者简介及科研成果 |
致谢 |
附录1 高压电源电路 |
附录2 牵引主回路 |
附录3 控制回路 |
附录4 异步电动机控制系统仿真模型 |
附录5 矢量控制框图 |
(9)城市轨道交通再生能馈技术及装置应用研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题的目的及意义 |
1.2 国内外研究现状 |
1.3 论文的主要内容 |
第二章 城市轨道交通供电系统概况及列车牵引制动原理 |
2.1 引言 |
2.2 外部电源及供电方案 |
2.3 35KV中压网络 |
2.4 牵引供电系统 |
2.5 列车牵引及制动 |
2.6 昆明地铁3号线供电系统结构 |
2.7 本章小结 |
第三章 再生能馈方案比选 |
3.1 引言 |
3.2 再生能馈方案比选 |
3.3 再生能馈方案比选结论 |
3.4 本章小结 |
第四章 基于MATLAB的再生能馈系统仿真分析 |
4.1 引言 |
4.2 系统主电路仿真模型搭建 |
4.3 系统控制电路仿真模型搭建 |
4.4 系统仿真分析 |
4.5 本章小结 |
第五章 3号线再生能馈设备的总体设计研究 |
5.1 引言 |
5.2 再生能馈装置应用分析 |
5.3 再生能馈装置总体设计研究 |
5.5 本章小结 |
第六章 3号线再生能馈装置运行分析 |
6.1 引言 |
6.2 再生能馈回馈设备效果验证 |
6.3 运行实例分析 |
6.4 本章小结 |
第七章 结论和展望 |
致谢 |
参考文献 |
附件 |
(10)工矿电力机车永磁同步电机驱动系统控制策略的研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 永磁同步电机高性能控制策略 |
1.2.2 永磁同步电机无位置传感器控制方法 |
1.2.3 电力机车制动能量回馈利用技术控制策略 |
1.3 课题研究内容 |
1.4 本文的研究内容与结构安排 |
第2章 工矿电力机车永磁同步电机驱动系统 |
2.1 引言 |
2.2 工矿电力机车系统结构 |
2.2.1 工矿电力机车机械部分 |
2.2.2 工矿电力机车空气管路系统 |
2.2.3 工矿电力机车电气部分 |
2.3 工矿电力机车主要类型 |
2.4 工矿电力机车牵引特性 |
2.5 工矿电力机车再生制动基本原理 |
2.5.1 再生制动能量共用直流母线型 |
2.5.2 再生制动能量储能型 |
2.5.3 再生制动能量回馈型 |
2.6 本章小结 |
第3章 基于干扰观测器的永磁同步电机滑模控制策略的研究 |
3.1 引言 |
3.2 永磁同步电机的数学模型 |
3.2.1 基本假设 |
3.2.2 ABC坐标系下永磁同步电机的数学模型 |
3.2.3 dq坐标系下永磁同步电机的数学模型 |
3.2.4 两相静止坐标系下的数学模型 |
3.3 滑模控制 |
3.3.1 滑模控制的基本原理 |
3.3.2 滑模控制到达的条件 |
3.3.3 滑模控制的抖振问题 |
3.4 干扰观测器 |
3.4.1 干扰观测器的基本原理 |
3.4.2 干扰观测器的基本模型 |
3.4.3 负载转矩干扰观测器的设计 |
3.5 基于干扰观测器的永磁同步电机滑模控制 |
3.5.1 基于干扰观测器的滑模控制方案 |
3.5.2 基于干扰观测器的滑模控制器的设计 |
3.6 基于干扰观测器的永磁同步电机互补滑模控制 |
3.6.1 基于干扰观测器的互补滑模控制方案 |
3.6.2 基于干扰观测器的互补滑模控制器的设计 |
3.7 数值仿真结果 |
3.7.1 基于干扰观测器的永磁同步电机滑模控制仿真结果 |
3.7.2 基于干扰观测器的永磁同步电机互补滑模控制仿真结果 |
3.8 本章小结 |
第4章 基于永磁同步电机反推控制的无位置传感器策略研究 |
4.1 引言 |
4.2 永磁同步电机反推控制 |
4.2.1 Lyapunov稳定性理论 |
4.2.2 反推控制原理及设计方法 |
4.3 基于永磁同步电机反推控制的无位置传感器策略研究 |
4.3.1 基于LMI干扰观测器设计 |
4.3.2 基于LMI干扰观测器的反推控制器设计 |
4.3.3 永磁同步电机位置估计 |
4.4 数值仿真结果 |
4.5 本章小结 |
第5章 工矿电力机车制动能量利用系统能量优化控制策略研究 |
5.1 引言 |
5.2 工矿电力机车再生制动能量分配理论分析及系统 |
5.2.1 再生制动能量分配优化的理论分析 |
5.2.2 工矿电力机车再生制动混合型能量利用系统 |
5.3 再生制动能量分配优化的控制策略 |
5.3.1 储能单元的柘扑结构与控制策略 |
5.3.2 能量回馈单元的柘扑结构与控制策略 |
5.4 数值仿真结果 |
5.5 本章小结 |
第6章 工矿电力机车永磁同步电机驱动系统设计与实验研究 |
6.1 引言 |
6.2 永磁同步电机驱动系统设计 |
6.2.1 硬件设计 |
6.2.2 软件设计 |
6.3 实验平台 |
6.4 实验结果 |
6.4.1 基于干扰观测器滑模控制实验结果 |
6.4.2 基于干扰观测器的永磁同步电机互补滑模控制实验结果 |
6.4.3 基于LMI干扰观测器的反推控制实验结果 |
6.4.4 工矿电力机车制动能量优化控制实验结果 |
6.5 本章小结 |
结论 |
参考文献 |
附录A 发表的学术论文 |
附录B 参与的科研项目 |
致谢 |
四、直流牵引电动机应用及设计(论文参考文献)
- [1]机车电传动系统技术特点及未来发展趋势研究[J]. 伍赛特. 传动技术, 2021(03)
- [2]电传动内燃机车励磁控制系统的研究[D]. 任相. 兰州交通大学, 2021(02)
- [3]内燃机车永磁同步电机牵引系统的改进[D]. 孟凡顺. 大连交通大学, 2020(06)
- [4]交直交电力牵引试验平台测控技术研究[D]. 付闯. 大连交通大学, 2020(06)
- [5]城市轨道交通牵引供电试验平台数据监控系统的设计与实现[D]. 鲁培琳. 中国铁道科学研究院, 2020(01)
- [6]Matlab环境下交流机车变频调速过程仿真[D]. 马天银. 兰州交通大学, 2020(01)
- [7]采煤机漏电保护器的研究与设计[D]. 赵亦辉. 西安科技大学, 2019(01)
- [8]基于VVVF的城轨车辆牵引传动控制技术及仿真研究[D]. 潘宣伊. 吉林大学, 2019(03)
- [9]城市轨道交通再生能馈技术及装置应用研究[D]. 王豫. 昆明理工大学, 2019(05)
- [10]工矿电力机车永磁同步电机驱动系统控制策略的研究[D]. 颜渐德. 湖南大学, 2019(01)