一、急性缺氧对脑损伤大鼠脑皮层代谢型谷氨酸受体1α表达的影响(论文文献综述)
侯坤[1](2021)在《IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究》文中进行了进一步梳理背景和目的:小胶质细胞是神经系统的固有免疫细胞,在中枢神经系统多种疾病的发生、发展中扮演重要的角色。缺血性脑卒中发生后,受缺血部位微环境的动态变化的影响,小胶质细胞的不同极化表型对损伤的发展和神经恢复的结局是至关重要的。既往研究发现,人为将M1型小胶质细胞诱导成M2型小胶质细胞细胞,可减轻短暂性脑缺血小鼠模型的梗死面积并促进神经功能恢复。小胶质细胞具有不同的极化表型,可以解释小胶质细胞在同一疾病的作用双重性。因此,有目的地抑制小胶质细胞由M2型向M1型极化,或诱导M1型向M2型极化,或降低M1型/M2型的比值,是缺血性脑卒中治疗的重要研究方向之一。IL-4主要由活化的T细胞产生,对体内多种免疫细胞均有调节作用。IL-4可刺激巨噬细胞和小胶质细胞向抗炎表型转化,从而抑制炎症进展,促进组织修复并发挥神经保护作用。目前,IL-4已应用于脑出血、脊髓损伤、癫痫、阿尔兹海默病等诸多神经系统疾病的研究。本研究拟探讨IL-4在缺血性卒中的治疗价值。方法:1、构建大鼠脑缺血再灌注(transient middle cerebral artery occlusion,t MCAO)模型,分假手术组与模型组,ELISA法检测大鼠外周血TNF-α、IFN-γ、IL-4、TGF-β和BDNF等炎症因子的变化。免疫荧光检测大鼠小胶质细胞极化表型的变化。取脑梗死患者和健康成人对照的外周血,ELISA法检测上述炎症因子的变化。2、构建大鼠t MCAO模型,分为假手术组、模型组、IL-4组和IL-4+AS1517499组。3天后予神经功能评分。取大鼠外周血,检测炎症因子的变化。处死大鼠,TTC染色,计算梗死容积,免疫荧光检测大鼠小胶质细胞极化表型的变化,TUNEL染色检测缺血半暗带组织细胞凋亡,Nissl染色法检测缺血半暗带神经元损伤。3、培养HAPI小胶质细胞系,对小胶质细胞进行氧糖剥夺(oxygen glucose deprivation,OGD)处理,分为Control组、OGD组、OGD+IL-4组、OGD+IL-4+AS1517499组。ELISA法检测细胞培养上清中IL-1β,IL-2,TNF-α,IL-10,TGF-β,BDNF等炎症因子的变化。Western blot检测JAK1、p-JAK1、STAT6、p-STAT6的表达水平变化。免疫荧光染色,检测小胶质细胞系极化表型的变化。荧光微球法检测小胶质细胞内吞能力的变化。4、培养RN-C神经元细胞系,建立神经元OGD培养模型,与预处理后的小胶质细胞共培养,分为Control组,OGD组,IL-4组,IL-4+AS1517499组。流式细胞术评价RN-C的凋亡,Western blot法检测RN-C凋亡相关蛋白的表达。5、统计分析使用Graph Pad Prism9进行。连续变量以“均数±标准差”表示,两组间比较采用t检验,多组间比较采用单因素方差分析。神经功能评估采用非参数检验(Kruskal-Wallis检验),多组间比较采取Dunn’s多组比较,P<0.05被认为有统计学差异。结果:1、与健康对照相比,脑梗塞患者血液中IFN-γ、TNF-α、TGF-β、BDNF和IL-4均明显升高,其中IFN-γ、TNF-α、BDNF和IL-4梗塞后第一天升高最明显,梗塞后第三天开始下降,但仍明显高于健康对照。2、相较于假手术组,模型组大鼠外周血中IFN-γ、TNF-α和IL-4水平均上升,BDNF水平下降。给予IL-4后,IL-1β,IL-2,TNF-α水平下降,IL-10,TGF-β,BDNF水平上升,联合给予IL-4+AS1517499后,IL-1β,IL-2,TNF-α水平上升,IL-10,TGF-β,BDNF水平下降。3、与假手术组相比,模型组缺血半暗带中小胶质细胞活化增加,M1与M2表型均增加。给予IL-4后,M2表型小胶质细胞增多,给予IL-4+AS1517499后,M2表型小胶质细胞减少。4、相较于假手术组,各模型组均出现明显的脑梗死。与模型组相比,给予IL-4后,脑梗死容积减少,联合给予IL-4+AS1517499后,大鼠脑脑梗死容积增加。5、TUNEL染色法检测细胞凋亡,与假手术组相比,模型组缺血半暗带细胞凋亡明显增加,给予IL-4后,细胞凋亡显着减少,同时给予IL-4+AS1517499后,凋亡明显增加。尼氏染色法检测神经元修复情况,与假手术组相比,模型组神经元尼氏小体明显减少,给予IL-4后尼氏小体增加,给予IL-4+AS1517499后,尼氏小体减少。6、与正常组和OGD组相比,给予IL-4后,CD163表达上升,给予IL-4+AS1517499后,CD163表达下降。与正常组和OGD组相比,给予IL-4后,小胶质细胞JAK1磷酸化(p-JAK1)增加、STAT6磷酸化(p-STAT6)增加,给予STAT6磷酸化抑制剂AS1517499后,JAK1磷酸化水平无变化,STAT6磷酸化水平降低。与正常组和OGD组相比,给予IL-4后,IL-1β、IL-2、TNF-α表达显着下调,IL-10,TGF-β,BDNF表达显着上升。给予IL-4+AS1517499后,IL-1β、IL-2、TNF-α表达上升,IL-10,TGF-β,BDNF表达下降。7、与正常组和OGD组相比,给予IL-4后,小胶质细胞的内吞能力增加,给予AS1517499后,内吞作用降低。8、在小胶质细胞、神经元共培养模型中,与Control组相比,OGD组RN-C细胞明显增加,IL-4处理后,RN-C的凋亡明显减少,凋亡蛋白表达下调,与IL-4组相比,IL-4+AS1517499组凋亡增加,凋亡蛋白表达增加。结论:1、IL-4通过JAK1-p JAK1-STAT6-p STAT6信号通路促进小胶质细胞向M2表型极化。2、IL-4促进小胶质细胞向M2表型极化,对缺血性卒中大鼠发挥神经保护作用。3、给予IL-4后,小胶质细胞分泌的促炎因子(IL-1β,IL-2,TNF-α)下降,抗炎因子(IL-10,TGF-β,BDNF)上升,吞噬能力增强,进而减少神经元凋亡与损伤,发挥神经保护作用。
刘蓓蓓[2](2021)在《动脉粥样硬化诱发的海马代谢异常影响突触可塑相关蛋白表达的机制及运动的调节作用》文中研究说明研究目的:动脉粥样硬化是以血管内膜黄色粥样脂质沉淀为特征的慢性、渐进性动脉疾病,是多种心脑血管疾病的风险因素和病理基础。近年来,动脉粥样硬化与认知损害的关系渐渐受到关注。发生在主动脉和冠状动脉等部位的动脉粥样硬化即可造成脑血流量减少、微血管损伤增加、血脑屏障渗透性增加、炎症反应和氧化应激加剧、白质病变和脑代谢异常等一系列脑结构和功能的病理改变,从而诱发突触可塑性和认知功能损害。我们推测脑代谢异常是动脉粥样硬化导致突触可塑性下降、认知功能受损的根本原因和核心机制,而AMPK、SIRT1、mTOR等与能量代谢密切相关的信号通路可能在动脉粥样硬化导致的代谢紊乱和认知损害中发挥着关键性的调控作用。有氧运动作为干预机体物质代谢与能量平衡的有效手段,也可参与脑代谢的调节。因此,本研究通过构建动脉粥样硬化大鼠模型,探究动脉粥样硬化对海马代谢和突触可塑相关蛋白表达的影响,讨论海马代谢异常与突触可塑相关蛋白表达受损的关系,并揭示有氧运动的干预效应。研究方法:健康雄性SD大鼠42只随机分为对照组(C,N=10)和高脂组(HFD,N=32)。高脂组大鼠进行10周的高脂膳食联合维生素D3腹腔注射,实验第10周末,对照组和高脂膳食组大鼠均禁食不禁水12h过夜后尾静脉采血2ml/只,用于检测血糖、血脂等指标,判定HFD组中患有高脂血症和高胆固醇血症的大鼠为动脉粥样硬化模型(M,n=18),并随机抽取模型组2只和对照组大鼠1只,麻醉处死后取主动脉进行组织切片染色。将其余M组大鼠随机分为动脉粥样硬化组(AS,n=8)和动脉粥样硬化运动组(TAS,n=8)。TAS组大鼠在小动物跑台上进行适应性运动3天,随后进行为期4周、每周5天的有氧运动。运动干预结束后,各组大鼠均通过Y迷宫进行行为学实验,次日经麻醉后取脑组织,快速分离出海马组织备检。通过GC-MS技术检测大鼠海马内代谢产物的变化,通过Western blot检测海马内能源底物转运体FATP-1/GLUT-1/MCT1/MCT2,代谢关键酶AR/G6PD/SCOT/FASN/P-ACC/ACC/SDHA/DHCR24,突触可塑蛋白SY38/Homer/PSD95/NMDAR/GABAR,能量代谢相关信号通路AMPK、SIRT1、mTOR-raptor/rictor-P70S6K/4EBP和NF-κB/NLRP3/IL-1β等蛋白的表达或活性。研究结果:(1)有氧运动干预前,AS组大鼠的TC、TG、LDL升高,且与TAS组大鼠水平相近。4周的有氧运动后,AS组大鼠TC、LDL水平仍高于C组大鼠,而TAS组LDL水平较AS组显着下降。(2)动脉粥样硬化模型大鼠海马代谢异常,与对照组相比,AS组大鼠海马内磷酸戊糖途径中间产物如3-磷酸甘油酸、5-磷酸木酮糖和5-磷酸核糖,某些氨基酸如苏氨酸、吡啶甲酸、4-羟基脯氨酸,三羧酸循环中间产物琥珀酸和壬酸等游离脂肪酸均显着增加,而花生四烯酸甲酯和硬脂酸甲酯则明显减少。(3)运动对动脉粥样硬化模型大鼠海马代谢的调节作用:TAS组大鼠海马内琥珀酸、支链氨基酸、壬酸和desmosterol水平显着下降,而花生四烯酸甲酯、硬脂酸甲酯、甘油醛-3-磷酸和果糖1,6-二磷酸升高。(4)AS组大鼠海马FATP-1表达升高而MCT2表达下降,海马GLUT-1表达下降而MCT1表达上调,而TAS组海马内GLUT1表达上调。(5)AS组大鼠在空间识别实验中进入新异臂次数减少、新异臂停留时间缩短。TAS组上述指标较AS组均表现出上升趋势。(6)AS组大鼠海马内Homer1a、SY38、GABAR蛋白水平较对照组降低;TAS组大鼠海马内Homer1a和SY38表达有上升趋势。(7)AS组大鼠的海马内AR、G6PD和SCOT表达上调的同时FASN和ACC表达下调;TAS组大鼠海马内AR含量减少。(8)AS组大鼠海马p-AMPK升高,TAS组海马p-AMPK有下降趋势。(9)AS组大鼠海马胞浆SIRT1蛋白显着下降而TAS组显着升高。(10)AS组大鼠海马RAGE均明显升高,NF-κB-NLRP3-L-1β信号激活。TAS组大鼠海马内IL-1β减少。(11)AS组大鼠海马mTOR、Raptor、Rictor、4EBP蛋白含量均显着减少。TAS组大鼠海马内4EBP表现出升高的趋势。研究结论:动脉粥样硬化大鼠海马代谢异常,表现为糖酵解减少,三羧酸循环受阻,磷酸戊糖途径激活,脂肪酸氧化障碍,胆固醇合成和氨基酸代谢受阻。这一过程伴随海马内AMPK信号和NF-κB/NLRP3/IL-1β信号通路激活,mTOR信号通路抑制,导致炎症反应和氧化应激,使突触可塑相关蛋白表达和空间识别能力受损。有氧运动能够有效改善动脉粥样硬化导致的外周血脂异常和海马代谢异常,缓解海马内炎症反应,有助于缓解动脉粥样硬化造成的海马突触可塑蛋白表达受损。
汪戎锦[3](2021)在《基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究》文中研究指明缺血性脑卒中作为全球性的公共健康问题,危害着全世界人类的健康,并以其高发病率和高死亡率,引起了科学家们的广泛关注。缺血性脑卒中发生的主要原因为凝结的血栓或栓子阻塞在脑动脉中使大脑供血受限从而引起氧气和营养的供应不足。刺五加叶作为一种可再生资源,因其化学成分以及药效作用与刺五加根相似,被广泛用于脑血管疾病、缺血性心脏病等疾病的治疗。本实验室在前期的研究工作中筛选并制备了刺五加叶的主要活性组分,并采用药效学研究证明了刺五加叶具有抗氧化、抑制细胞损伤以及缺血性脑卒中的保护作用。然而,刺五加叶的化学成分复杂,在体内作用于多个靶点,致使其治疗缺血性脑卒中的整体作用机制研究尚不够深入,目前缺乏系统研究,在一定程度上限制了刺五加叶的开发及应用。代谢组学作为一种系统生物学研究方法,能够对内源性小分子的整体变化进行系统分析,逐渐成为揭示病机复杂疾病的发病机理,和多成分、多靶点药物作用机制的一种强有力工具。因此,本研究围绕脂质异常、神经损伤以及菌群失调等缺血性脑卒中的关键病理环节,采用基于质谱技术的多样本(血清、粪便、尿液、脑组织)代谢组学的研究方法,对刺五加叶治疗缺血性脑卒中的作用机制进行了深入研究,并阐明其科学内涵。主要研究内容包括以下几个方面:1.刺五加叶治疗缺血性脑卒中的血清脂质组学及其神经保护作用研究首先对刺五加叶的主要活性组分进行基于UPLC方法的成分分析。结果表明,刺五加叶的主要活性组分含有有机酸类化合物、黄酮类化合物和糖苷。其次,建立大鼠缺血性脑卒中疾病模型,并给予刺五加叶治疗四周。由于脂质异常、神经损伤、氧化应激和炎症反应是缺血性脑卒中发作的四个主要方面,本文围绕以上四个方面展开了研究。首先,采用基于UPLC-Q-TOF/MS的脂质组学方法,研究缺血性脑卒中发生后大鼠血清脂质的代谢紊乱,以及刺五加叶的调节作用。利用UPLC-Q-TOF/MS采集刺五加叶给药四周后缺血性脑卒中大鼠血清样本的脂质代谢轮廓,结合Progenesis QI软件进行包括多元统计学分析、潜在脂质标记物鉴定以及通路分析在内的数据处理。共鉴定出27种脂质组学生物标记物,包括PC,PE,SM和TG类脂质,分布在各种脂质代谢途径中,包括甘油磷脂、亚油酸、α-亚麻酸、甘油脂、鞘脂和花生四烯酸代谢途径。结果表明,刺五加叶能够调节缺血性脑卒中发生发展过程中出现的脂质代谢紊乱。其次,针对缺血性脑卒中发生时的神经损伤过程,采用UPLC-TQ/MS对大鼠脑组织及血清中10种神经递质进行了定量研究。结果表明,缺血性脑卒中能够导致谷氨酸(Glu),天冬氨酸(Asp)等兴奋性氨基酸的过度释放,产生神经毒性,还能够增加γ-氨基丁酸(GABA)、五羟色胺(5-HT)、去甲肾上腺素(NE)、肾上腺素(E)、多巴胺(DA)以及牛磺酸(Tau)的含量,并降低抑制性神经递质甘氨酸(Gly)以及神经炎症调节剂乙酰胆碱(Ach)的含量。而给予刺五加叶治疗后,能够使以上神经递质在脑组织和血清中的水平均向正常水平调节,说明其能够通过调节缺血性脑卒中大鼠的神经递质含量发挥保护中枢神经系统的作用。最后,通过MDA和SOD的定量分析,检测缺血性脑卒中后氧化应激程度,通过TNF-α,IL-6和IL-10的定量分析,检测炎症反应程度。结果表明,刺五加叶可以在一定程度上减轻机体的氧化应激和炎症损伤,从而减轻缺血性脑卒中对机体的损伤。从调节脂质代谢紊乱、神经损伤、氧化应激反应以及炎症反应等方面揭示了刺五加叶治疗缺血性脑卒中的作用机制。2.刺五加叶治疗缺血性脑卒中粪便代谢组学研究及其对微生物-肠-脑轴的影响微生物-肠-脑轴双向通讯系统与缺血性脑卒中的发生及预后相互关联,这种关联作用近年来逐渐引起科学家的广泛关注。本文采用基于UPLC-Q-TOF/MS的粪便非靶向代谢组学方法,结合基于UPLC-TQ/MS的粪便胆汁酸靶向代谢组学方法,以及16S r RNA粪便菌群测序,研究了刺五加叶对缺血性脑卒中模型大鼠微生物-肠-脑轴的平衡作用。首先,利用UPLC-Q-TOF/MS采集刺五加叶治疗四周后缺血性脑卒中大鼠粪便样本的代谢轮廓,结合多元统计学分析筛选具有显着差异的潜在生物标记物,并进行通路分析,共鉴定出40个潜在的差异性生物标记物,主要涉及花生四烯酸代谢通路、不饱和脂肪酸的生物合成途径、胆汁酸的生物合成途径、鞘脂代谢通路等。以上生物标记物的含量在缺血性脑卒中发生后具有显着的变化,而刺五加叶可以调节其含量以恢复正常状态。其次,基于UPLC-TQ/MS的靶向代谢组学方法对13种胆汁酸进行了定量分析。结果显示,缺血性脑卒中发生时,大鼠粪便胆汁酸发生代谢紊乱,刺五加叶能够调节多种胆汁酸的含量,使其更加趋近于正常水平。最后,16S r RNA菌群测序结果表明,缺血性脑卒中可导致大鼠肠道内病原体富集,益生菌水平大幅降低,而刺五加叶能够使缺血性脑卒中大鼠体内病原体含量降低,同时增加益生菌水平。上述结果揭示了刺五加叶具有对缺血性脑卒中大鼠微生物-肠-脑轴的调节作用,为阐明刺五加叶治疗缺血性脑卒中的作用机制研究奠定基础。3.刺五加叶通过对益生菌的调节作用治疗缺血性脑卒中的机制验证选择能够被刺五加叶调节的益生菌给药缺血性脑卒中大鼠,验证给药刺五加叶后,益生菌水平的升高是发挥其治疗效果的重要因素之一。首先,培养罗伊氏乳酸杆菌以及丁酸梭菌并制备菌液,分别给予缺血性脑卒中大鼠以上两种菌液。经四周给药后,检测大鼠粪便的菌群组成。结果表明,与模型组比较,益生菌给药后的缺血性脑卒中大鼠粪便中菌群组成与含量产生较大变化,并与对照组大鼠粪便菌群组成更为相似。其次,采用基于UPLC-TQ/MS的定量方法检测缺血性脑卒中大鼠经益生菌给药后,脑组织中神经递质的含量变化。结果表明,给予两种益生菌后,具有神经毒性的神经递质含量降低,而具有神经调节作用的神经递质含量显着升高,更加趋近于健康大鼠。最后,通过ELISA法检测大鼠血清和脑组织中多种炎症因子IL-1β、IL-6、IL-10、TNF-α的含量和脑组织中MDA、SOD、COX-2、MAO的含量。结果表明,当缺血性脑卒中发生时,大鼠体内IL-1β、IL-6、TNF-α、MDA、COX-2和MAO含量显着升高,而IL-10和SOD含量显着降低。给予两种益生菌后,缺血性脑卒中大鼠体内以上指标的含量均能够被调节至正常水平,推测两种益生菌均能够通过减轻炎症及氧化应激损伤,对机体产生一定的保护作用。本研究验证了刺五加叶能够通过影响微生物-肠-脑轴的代谢,增加体内益生菌丰度,调节卒中引起的神经损伤、炎症反应以及氧化应激损伤,从而起到对机体的保护作用。4.刺五加叶治疗缺血性脑卒中的尿液代谢组学研究尿液样本能够准确、灵敏地反映机体的代谢变化,为代谢组学研究中最重要的生物样本。采用基于UPLC-Q-TOF/MS的非靶向尿液代谢组学方法对刺五加叶治疗缺血性脑卒中的作用机制进行研究并验证。采用UPLC-Q-TOF/MS采集大鼠尿液样本的代谢轮廓,结合Progenesis QI软件进行数据处理,筛选并鉴定潜在生物标记物,构建基因-酶-生物标记物代谢网络。本研究共筛选出42种在缺血性脑卒中疾病进程中具有显着变化的潜在生物标记物,经刺五加叶治疗后,38种生物标记物的含量变化能够被显着调节,涉及体内牛磺酸和次牛磺酸代谢通路、花生四烯酸代谢通路、半胱氨酸和蛋氨酸代谢通路、类固醇激素生物合成途径、色氨酸代谢通路、酪氨酸代谢通路和嘧啶代谢途径等多种代谢途径的调节作用。最后,选择3种与以上通路相关的关键酶COX-2,NOS和MAO作为刺五加叶治疗的靶点酶,进行定量验证。结果表明,模型大鼠经刺五加叶治疗后血清和脑组织中三种酶的含量与假手术组大鼠相似,证明了刺五加叶可以通过调节以上三种酶的含量发挥刺五加叶治疗缺血性脑卒中的作用。本实验结果有助于进一步了解缺血性脑卒中的发病机制,并为刺五加叶的潜在治疗机制研究提供科学依据。5.基于高效同位素标记衍生化的刺五加叶治疗缺血性脑卒中尿液代谢组学研究高效化学同位素标记(CIL)衍生化结合液质联用(LC-MS)的代谢组学方法是使用靶向特定官能团的试剂标记生物样本,使所有具有相同官能团的代谢物生成相应的衍生代谢物,在提高总体代谢组学覆盖率的同时,将同位素引入标记代谢物中,使重同位素试剂衍生的代谢产物作为轻同位素试剂衍生代谢物产物的内标,从而提高代谢产物的定性及定量精度。本研究采用基于CIL LC-MS的刺五加叶治疗大鼠缺血性脑卒中的尿液代谢组学方法,分别对胺/酚类亚代谢组和羧酸类亚代谢组进行分析研究。结果表明,刺五加叶能够通过体内多种通路调节缺血性脑卒中发生后的代谢紊乱,与传统尿液代谢组学研究结果相比,CIL LC-MS法筛选出了更多潜在生物标记物,并覆盖更多体内代谢通路,得到了覆盖率更广、定量更精准的代谢组学结果。同时,在每条通路中匹配到更多的具有显着差异的代谢产物,明确通路中上游化合物及下游产物的显着变化及机制,使针对各通路的研究更加全面。最终,从神经保护、调节能量代谢、抑制炎症损伤、拮抗氧化应激的角度对刺五加叶治疗缺血性脑卒中的作用机制进行系统阐述。进而为刺五加叶治疗缺血性脑卒中的作用机制提供更加全面的科学依据。综上所述,本论文采用基于大鼠血清、粪便、尿液以及脑组织多种生物样本的代谢组学方法,进行刺五加叶治疗大鼠缺血性脑卒中作用机制的系统研究。将尿液和粪便的非靶向代谢组学研究,与血清脂质、脑组织神经递质以及粪便胆汁酸的靶向代谢组学研究相结合,明确刺五加叶对缺血性脑卒中大鼠体内多种代谢通路的调节作用,对脂质紊乱的调节作用,以及对神经系统的保护作用。其次,通过对大鼠粪便的菌群分析和验证实验,阐述刺五加叶可能通过调节微生物-肠-脑轴双向通讯系统发挥缺血性脑卒中的治疗作用,推测刺五加叶增加肠道益生菌含量是其发挥缺血性脑卒中治疗作用的关键因素之一。并采用基于高效同位素标记结合LC-MS的代谢组学方法,对体内胺/酚类亚代谢组及羧酸类亚代谢组进行全面分析,从神经保护、调节能量代谢、抑制炎症损伤、拮抗氧化应激的角度系统阐述刺五加叶治疗缺血性脑卒中的作用机制。本研究结合先进的分析技术手段,探讨中药的作用机制,为阐明刺五加叶治疗缺血性脑卒中的作用机制提供理论依据,同时也为中药作用机制的系统研究提供了新的方法路线。
赵亚林[4](2021)在《舒筋健脑方对脑瘫患者认知功能影响及机制研究》文中指出1 目的1.1文献研究:探讨文献中治疗脑瘫中药的用药规律,为临床中药用药提供依据。1.2药理研究:采用网络药理学探索益智仁治疗脑瘫(CP)作用机制,探寻改善脑瘫的认知功能的可能机制。1.3临床研究:观察舒筋健脑方联合选择性脊神经后根切断(SPR)手术治疗痉挛型脑瘫患者的临床疗效,为中药用于改善痉挛型脑瘫患者的康复提供临床依据。1.4基础研究:基于Bcl-2/Bax、Caspase-3研究舒筋健脑方改善缺血缺氧脑损伤认知功能作用机制。2 方法2.1 文献研究:检索中国知网、万方、维普、Pubmed、Web of science、Co-chrane library数据库中药治疗脑瘫的文献,采用EXCEL表格分析药物的服用方法、频次、四气五味及归经;SPSS Modeler18.0软件进行组方规律分析、SPSS Statistics 24进行药物的因子分析和聚类分析。2.2药理研究:通过中药系统药理学数据库和分析平台(TCMSP)获得并筛选益智仁的活性成分及作用靶点,通过Gencards、OMIM、TTD、DRUGBANK数据库获取CP的主要靶点,运用Cytoscape3.7.2软件构建益智仁活性成分-靶点交集网络,利用String平台构建共同靶点蛋白相互作用(PPI)网络,获得关键活性成分与核心蛋白靶点,通过微生信网对共同靶点进行GO分析和KEGG通路富集分析。2.3临床研究:采用前瞻性、单中心、随机对照临床试验,随机数字表将患者分为试验组和对照组,两者都采用SPR手术和康复训练,试验组术后同时给予口服舒筋健脑方颗粒2个月。收集两组的一般资料、中国比内测试评分、GMFM-88评分、CSI评分、ADL评分、肌力、肌张力及患者和母亲的体质量表评分。2.4基础研究:7日的SD大鼠分为对照组、模型组、米诺环素组、舒筋健脑方低、中、高剂量组6组,采用Rice-Vannucci模型建立脑瘫缺血缺氧脑损伤模型,术后给予称重、行为学检测和HE染色,之后对照组、模型组等量的生理盐水灌胃,药物组给予相对应的药物灌胃1周后,复测体重、行为学检测,取脑组织行免疫组化,查看海马CA1区Bcl-2、Bax、Caspase-3的表达。取脑中海马组织,采用WB检测Bcl-2、Bax、Caspase-3的蛋白量表达。3结果:3.1文献研究:用药频数前6位:当归、伸筋草、牛膝、黄芪、红花、白芍,用药性温,味为甘、辛、苦,归肝、肾、脾经,补虚药、祛风湿、活血化瘀药最多。关联分析核心用药透骨草、牛膝、伸筋草。提取6个公因子。聚类分析有当归;川芎、甘草、黄芪;杜仲、丹参、桂枝、红花、白芍、牛膝、木瓜、透骨草、鸡血藤、伸筋草。3.2药理研究:共筛选出益智仁有效活性成分8种,关键活性成分为:油酸、胡萝卜苷、β-谷甾醇等,益智仁作用于CP的靶点18个,PPI网络显示TP53、MYC、CASP3、CASP8、ALB等为核心靶点,共富集GO条目84条,KEGG通路292条(均P<0.05),主要富集在癌症信号通路。3.3临床研究:(1)两组基线未见异常,主要为男性,年龄5-13岁之间,多为头胎顺产,混合喂养,痉挛型脑瘫多为双瘫患者。(2)中国比内测试量表统计的智商分数,治疗后试验组比对照组的智商分数高(P=0.002<0.05),比治疗前的智商明显提高(P<0.05)。(3)GMFM-88评分中,治疗后试验组比对照组的运动评分均有提高,在评分C、D、E区的功能改善明显(P<0.05)。组内比较,除了对照组GMFM-A区P=0.094>0.05,其余四区及试验组的五个区的运功评分明显改善(P<0.05)。(4)CSI评分、ADL组内比较显示改善明显(P<0.05)。(5)肌力统计,治疗后两组比较,髂腰肌、股二头肌及胫后肌试验组比对照组好转(P<0.05);组内比较,试验组与对照组都是髂腰肌、股四头肌、股二头肌的肌力治疗后比治疗前好转(P<0.05)。(6)肌张力组内分析,试验组与对照组治疗后较治疗前好转(P<0.05)。(7)体质中试验组治疗前偏气虚和阴虚,治疗后均衡质和偏阴虚,对照组治疗前后都常见偏气虚的体质。母亲的以阴虚质和痰湿质为主。3.4基础研究:(1)体重:术后给予灌胃1周后组间体重均明显改善(F=11.799,P=0.000<0.05)。中剂量和高剂量组体重比模型组改善明显(P<0.05)。(2)行为学:组间比较,术后24小时检测及灌胃1周悬吊实验、倾斜板实验、Longa评分差异明显(P<0.05)。灌胃1周后米诺环素组、中药中剂量组和高剂量组比模型组悬吊时间延长(P<0.05)。中药中剂量组和高剂量缩短了倾斜的时间(P<0.05)。各用药组均可改善神经功能(P<0.05)。(3)HE染色:脑组织的海马CA1区对照组的神经细胞丰富且排列整体,细胞结构清晰。模型组的神经细胞数量减少,细胞外形不规则,胞浆减少,细胞核变小或者消失。(4)免疫组化表达中,米诺环素、中药低剂量组明显减少海马组织CA1区Bax、Caspase-3的表达(P<0.05),中药中剂量和高剂量增加Bcl-2的表达(P<0.05),减少Bax、Caspase-3的表达(P<0.05)。(5)WB实验统计分析:中药高剂量组促进Bcl-2的表达,米诺环素组、中药低中高剂量可以减少Bax蛋白的含量(P<0.05)。而药物治疗都可以提高Bcl-2/Bax的比值(P<0.05),且与中药剂量成正比。Caspase-3蛋白表达量与中药药物的剂量成反比,只有中药高剂量明显降低Caspase-3蛋白表达(P<0.05)。4结论:4.1文献研究:脑瘫患者治疗应扶正与祛邪并用,补益肝脾肾扶助正气,以祛风活血通络祛邪,重视扶助正气药物。4.2药理研究:本研究初步揭示了益智仁的多成分、多靶点、多通路的作用机制,bcl-2、bax、caspase-3是细胞凋亡的主要基因蛋白,是之后基础实验研究的重点。4.3临床研究:中药可以辅助改善术后痉挛型脑瘫患者的运动功能,有效的改善认知功能,有利于患者体质改善。4.4基础研究:在缺血缺氧脑损伤引起的脑部海马细胞损伤中,舒筋健脑方药物可以通过提高Bcl-2/Bax 比值比,降低Caspase-3的蛋白表达保护海马神经细胞,减轻细胞的凋亡,而且与药物的剂量成正相关性。
瞿源[5](2021)在《脂多糖诱导小鼠形成免疫耐受后对缺血性脑中风的影响》文中提出小胶质细胞作为中枢神经系统的常驻固有免疫细胞,在脑中风发生过程中起着不可或缺的作用。目前最新研究报道指出,小胶质细胞可被诱导形成免疫耐受。然而,脂多糖(lipopolysaccharide,LPS)诱导小鼠形成免疫耐受后对缺血性脑中风的影响,以及处于耐受状态下小胶质细胞糖酵解与氧化磷酸化水平的变化尚不清楚。在本实验中,我们首先通过腹腔注射的方式连续4天向小鼠体内注射0.5mg/kg的LPS构建LPS诱导的免疫耐受模型。在小鼠建立免疫耐受后的第4天,我们采用化学光敏剂Rose bengal对耐受后的小鼠构建了急性缺血性脑中风模型,同时应用Nissl染色法、Fluoro-Jade C染色法和免疫荧光染色法分别对梗死体积、退行性神经元以及细胞因子的变化进行检测。在体外实验中,我们通过培养原代小胶质细胞以及BV-2细胞,来检测LPS诱导小胶质细胞形成免疫耐受后对小胶质细胞迁移、吞噬、炎症和增殖的影响。与此同时,我们对免疫耐受处理后的小胶质细胞进行氧糖剥夺再灌注,同样观察小胶质细胞迁移、吞噬、炎症和增殖的影响。最后,我们分别应用D-2-脱氧葡萄糖(2-DG)以及干扰素-γ(IFN-γ)来调节处于耐受状态小胶质细胞的糖酵解以及氧化磷酸,以此探究小胶质细胞免疫耐受与代谢水平变化之间的关系。实验研究结果发现,在体内LPS诱导的免疫耐受降低了中风后小鼠梗死体积、退行性神经元数量、小胶质细胞的激活数量以及促炎因子的表达,但增强了抑炎因子的表达。在体外实验中,LPS诱导的小胶质细胞免疫耐受,使得小胶质细胞迁移能力、促炎因子的表达、细胞增殖以及细胞吞噬能力降低。在氧糖剥夺再灌注过程中处于免疫耐受状态的小胶质细胞迁移能力、促炎因子的表达和细胞增殖水平仍处于抑制状态,但吞噬能力在氧糖剥夺再灌注后却显着上升。最后,通过2-DG和IFN-γ分别抑制糖酵解以及增强氧化磷酸化,发现促炎因子表达上调、细胞迁移能力上升、细胞增殖水平上调以及吞噬能力下降,以上现象表明LPS诱导的小胶质细胞免疫耐受被打破。以上结果表明,LPS诱导的免疫耐受可以减轻缺血性脑中风带来的损伤,这可能与小胶质细胞免疫功能的改变息息相关,而抑制糖酵解或增强氧化磷酸化可以打破小胶质细胞的免疫耐受状态。这些结果为小胶质细胞代谢状态与免疫功能间关系的研究提供新的见解,并为缺血性脑中风的治疗提供新的思路。
侯晓婵[6](2021)在《基于PERK通路探讨补阳还五汤抑制内质网应激介导的细胞凋亡减轻脑缺血再灌注损伤》文中进行了进一步梳理脑缺血再灌注(ischemia-reperfusion,I/R)损伤是恢复再通缺血区血供时常见的病理生理改变,受再灌注时间、强度等多方面因素的影响,与炎症反应、细胞自噬和凋亡等多重机制有关。近年来研究发现,内质网应激(endoplasmic reticulum stress,ERS)介导的细胞凋亡在脑I/R损伤的发生发展中起着重要作用,并决定脑组织的最终梗死体积。葡萄糖调节蛋白78(glucose regulated protein 78 k D,GRP78)是ERS发生的标志性蛋白,检测其表达可有效反应ERS状态。检测PERK通路和Bcl-2家族相关蛋白等可有效反映ERS介导的细胞凋亡。缺血性卒中归属于中医的“中风”,该病的主要病机为气虚血瘀。补阳还五汤(Buyang Huanwu decoction,BYHWD)是传统医学治疗中风气虚血瘀证的代表方剂,且在临床已取得了肯定的疗效。BYHWD可减轻大鼠脑I/R损伤已被多项实验证实,但ERS介导的细胞凋亡是否参与了BYHWD抗脑I/R损伤未见报道。本研究利用大鼠构建大脑中动脉闭塞模型模拟脑I/R损伤,通过观察比较大鼠行为学改变、神经细胞病理形态学变化,ERS超微结构改变,以及ERS蛋白GRP78和凋亡相关蛋白的表达来探讨BYHWD对脑I/R大鼠神经损伤、ERS和细胞凋亡表达的影响。同时利用PC12细胞构建缺氧缺糖/复氧复糖模型模拟脑I/R损伤,给予PERK抑制剂干预后,通过检测PERK信号通路相关蛋白探讨BYHWD基于PERK信号通路抑制ERS介导的细胞凋亡对脑I/R损伤的影响。第一部分补阳还五汤对脑缺血再灌注大鼠神经损伤、内质网应激蛋白GRP78和细胞凋亡蛋白表达的影响目的:探讨补阳还五汤对脑缺血再灌注(I/R)大鼠神经损伤、内质网应激蛋白GRP78和细胞凋亡蛋白表达的影响。方法:1.将雄性SD大鼠(120只)随机分为假手术组(20只)和手术组(100只)。手术组大鼠通过建造MCAO模型模拟脑I/R损伤。将手术组大鼠随机进行脑缺血2 h后再灌注24 h(50只)和72 h(50只)处理。将再灌注24 h和72 h造模成功的大鼠分别随机分为模型组、BYHWD组和尼莫地平组。BYHWD组在术后给予汤药灌胃处理(14.3g·kg-1),日2次;尼莫地平组给予腹腔注射给药(10mg·kg-1),日1次。2.通过Zea Longa评分法观察各组大鼠不同时间点神经功能缺损情况进行模型筛选和药效观察;TTC染色法检测再灌注24 h大鼠脑梗死体积;甲苯胺蓝法观察再灌注24 h时神经细胞的病理形态和数量改变;苏木素-伊红(HE)法观察再灌注72 h时神经细胞的病理形态改变;透射电镜法观察再灌注72 h时内质网超微结构病变;Western Blot法检测ERS蛋白GRP78不同时间点的表达差异及再灌注72 h时细胞凋亡相关蛋白Bax/Bcl-2、Caspase-3的表达。3.数据分析所有实验数据均采用Graph Pad Prism 8.0.2软件进行统计分析。组间比较采用单因素方差分析,以P<0.05表示差异有统计学意义。结果:1.模型成功率:共100只大鼠通过随机抽样的方式纳入手术组,通过Zea Longa评分法进行模型筛选,其中1-3分者82只,模型成功率为82%。2.神经功能缺损评分结果:假手术组大鼠评分为0,活动自如,无行为学改变;与假手术组相比,模型组大鼠评分显着升高,活动受限,出现神经功能受损改变(P<0.05);与模型组比较,BYHWD组评分有所下降,功能改善(P<0.05),尼莫地平组评分也低于模型组(P<0.05)。3.TTC染色结果显示:正常脑组织呈红色,梗死区呈白色。假手术组皆为红色,无白色梗死区;模型组出现大面积白色梗死区(P<0.05);与模型组相比,BYHWD组和尼莫地平组白色梗死区域减少(P<0.05)。4.甲苯胺蓝法染色结果显示:假手术组神经细胞形态规整,胞核呈近圆形,核膜光滑完整,细胞数量丰富;与假手术组相比,模型组神经细胞出现变形,胞核呈不规则状,核碎裂,神经细胞数量显着减少(P<0.05);与模型组相比,BYHWD组神经细胞形态趋于规整,胞核清晰可见,呈近圆形,核膜完整,神经细胞数量较多(P<0.05)。5.HE染色结果显示:胞质与背景呈不同程度的粉红色,胞核为浅蓝色,核仁为一粒深蓝色的斑点,若出现染色质凝聚固缩可见深蓝色的斑块。结果显示:假手术组神经细胞形态规整,胞核近圆形、呈浅蓝色,核膜光滑完整,中间可见一粒深蓝色的核仁,个别细胞内可见胞核内染色质凝聚深染的深蓝色斑块;与假手术组比,模型组神经细胞出现变形,胞核形状不规则,浅蓝色细胞核较少,核膜破裂,未见或少见核仁,有深蓝色斑块的染色质凝固现象;与模型组相比,BYHWD组细胞形态得到改善,趋于规整,胞核近圆形,核膜光滑完整,中间可见核仁,部分细胞有深蓝色斑块的染色质凝聚现象。6.透射电镜超微结构显示:假手术组粗面内质网形态规整,有大量核糖体附着;与假手术组相比,模型组粗面内质网扩张严重,且伴有核糖体脱落;与模型组相比,BYHWD组和尼莫地平组粗面内质网扩张程度减轻,且有较为丰富的核糖体。7.Western Blot法检测ERS蛋白GRP78再灌注24 h、72 h结果显示:假手术组在不同时间均呈低表达;与假手术相比,GRP78在模型组表达量显着升高(P<0.05);与模型组相比,BYHWD组在再灌注24 h时表达升高(P<0.05),再灌注72 h时表达降低(P<0.05);尼莫地平组与BYHWD组呈相同趋势。8.Western Blot法检测再灌注72 h凋亡相关蛋白Bax/Bcl-2、Caspase-3结果显示:与假手术组比较,上述蛋白在模型组的表达显着增加(P<0.05);与模型组相比,Bax/Bcl-2、Caspase-3在BYHWD组表达量降低(P<0.05),在尼莫地平组表达也降低(P<0.05)。小结:补阳还五汤可改善MCAO模型大鼠的神经功能,减小脑梗死体积,改善细胞形态,减轻细胞超微结构改变,同时可在缺血再灌注24 h时增加GRP78的表达,在缺血再灌注72 h时可抑制GRP78的表达,降低细胞凋亡相关蛋白Bax/bcl-2和Caspase-3的表达。推测补阳还五汤可能通过抑制ERS介导的细胞凋亡减轻脑I/R损伤。第二部分补阳还五汤基于PERK通路抑制内质网应激介导的细胞凋亡减轻PC12细胞缺氧缺糖/复氧复糖损伤的机制研究目的:探讨补阳还五汤基于PERK信号通路抑制ERS介导的细胞凋亡对PC12细胞缺氧缺糖/复氧复糖(OGD/R)损伤的影响。方法:1.将PC12细胞随机分为正常组、不同浓度BYHWD含药血清组(1/10、1/100、1/500、1/1000、1/5000)和不同浓度阴性对照组(1/10、1/100、1/500、1/1000、1/5000)。正置显微镜观察各组细胞生长状态;待细胞密度达90%后,CCK-8法检测各组细胞活性,通过比较各组细胞的OD值观察BYHWD含药血清对正常PC12细胞活性的影响。2.将PC12细胞随机分为正常组、模型组、不同浓度BYHWD含药血清组(1/10、1/100、1/500、1/1000、1/5000)、不同浓度阴性对照组(1/10、1/100、1/500、1/1000、1/5000)。除正常组,其余3组进行缺氧缺糖2 h、复氧复糖24 h的OGD/R模型建造模拟脑I/R损伤。利用CCK-8法检测各组细胞活性,通过比较细胞的OD值观察BYHWD含药血清对PC12细胞OGD/R活性的影响并筛选出有效浓度。3.将PC12细胞随机分为正常组、模型组、PERK抑制剂组、BYHWD组和阴性对照组。除正常组,其余4组进行缺氧缺糖2 h、复氧复糖24 h模型建造。利用免疫组化法检测PERK信号通路蛋白p-e IF2α的表达,通过比较阳性细胞表达率、观察有无染色质凝集固缩的细胞凋亡现象检测BYHWD对PERK信号通路的影响。(阳性细胞个数/细胞总数=阳性细胞表达率)4.数据分析所有实验数据均采用Graph Pad Prism 8.0.2软件进行统计分析。组间比较采用单因素方差分析,以P<0.05表示差异有统计学意义。结果:1.不同浓度BYHWD药物血清对正常PC12细胞的生长形态影响:正常组细胞形态规整,突触完整呈梭形,胞核呈近圆形,折光性好;与正常组相比,不同浓度BYHWD药物血清组、不同浓度阴性对照组细胞状态良好,形态均无明显变化。2.BYHWD含药血清对正常PC12细胞生长活性的影响:CCK-8检测出的OD值代表细胞活性。与正常组相比,不同浓度BYHWD药物血清组、不同浓度阴性对照组的OD值均无显着差异(P>0.05),说明BYHWD药物血清对正常PC12细胞的活性无影响。3.BYHWD药物血清对PC12细胞OGD/R活性的影响:OD值代表细胞活性。正常组的OD值最高,表示该组的细胞活性最好;与正常组相比,模型组OD值下降,活性显着降低(P<0.05);与模型组比,BYHWD1/500浓度药物血清组OD值升高,细胞活性提高(P<0.05),其余各组细胞活性无明显升高,阴性对照不同浓度组活性也未明显高于模型组,说明BYHWD药物血清可有效减轻PC12细胞OGD/R损伤,且有效浓度为1/500。4.BYHWD对PERK信号通路的影响:细胞核为蓝色,p-e IF2α阳性表达为棕黄色,细胞核内深蓝色斑块为可能为染色质凝集(为细胞凋亡的病理形态特征)。染色结果显示:正常组少量细胞出现棕黄色沉淀,阳性细胞表达率较低,未见深蓝色斑块的染色质凝聚现象;与正常组相比,模型组细胞胞浆部位皆出现棕黄色沉淀,阳性细胞表达率显着高(P<0.05),可见细胞核出现染色质凝聚的深蓝色斑块;与模型组比,PERK抑制剂组有棕色颗粒的细胞数减少,阳性细胞率降低(P<0.05),蓝色深染细胞减少;与模型组比,BYHWD药物血清组部分细胞出现棕黄色颗粒,阳性表达率降低(P<0.05),少量细胞出现细胞核深染、染色质凝聚,细胞凋亡形态表现减轻;阴性对照组与模型组细胞活性无显着差异。小结:补阳还五汤含药血清有效浓度为1/500,可增强OGD/R PC12细胞活性,降低p-e IF2α细胞阳性表达,减轻细胞凋亡,表明补阳还五汤含药血清可减轻PC12细胞OGD/R损伤,其可能与抑制PERK通路、下调p-e IF2α的表达,降低ERS介导的细胞凋亡有关。结论:1、补阳还五汤可改善MCAO模型大鼠的神经功能,减小脑梗死体积,改善细胞形态,减轻细胞超微结构改变,同时可在缺血再灌注24 h时增加GRP78的表达,在缺血再灌注72 h时可抑制GRP78的表达,降低细胞凋亡相关蛋白Bax/bcl-2和Caspase-3的表达。推测补阳还五汤可能通过抑制ERS介导的细胞凋亡减轻脑I/R损伤。2、补阳还五汤含药血清有效浓度为1/500,可增强OGD/R PC12细胞活性,降低p-e IF2α细胞阳性表达,减轻细胞凋亡,表明补阳还五汤含药血清可减轻PC12细胞OGD/R损伤,其可能与抑制PERK通路、下调p-e IF2α的表达,降低ERS介导的细胞凋亡有关。
段佳林[7](2020)在《太白楤木总皂苷及其单体成分对脑卒中的作用及机制研究》文中研究指明脑卒中是威胁人类健康的三大疾病之一,是我国成年人致死和致残的首要原因,且呈年轻化趋势,其中缺血性脑卒中占60-80%。目前,治疗缺血性脑卒中主要采用溶栓法进行血管再通,但严格的时间窗限制使中国患者受益率只有2.4%。超时间窗溶栓虽能取得一定的治疗效果,但有可能引起再灌注损伤,即脑缺血/再灌注损伤(Cerebral ischemia-reperfusion injury,CI/RI)。缺血中心区细胞已坏死无法逆转,但周边脑区即缺血半暗带细胞还可以挽回,因此,保护缺血半暗带组织和细胞,阻止脑损伤进一步发展,对于治疗脑卒中具有重要意义。太白楤木特产于我国“三大药山”之一的太白山区,其主要成分太白楤木总皂苷(Saponins from Aralia taibaiensis,sAT),具有抗氧化、抗炎、抑制凋亡等生物学作用,但其对CI/RI的防治作用尚不明确,同时,其脑保护活性成分和作用机制也未见报道。目的:1.揭示sAT对抗CI/RI的药理学作用,尤其对CI/RI关键环节(氧化应激和线粒体障碍)的作用;2.阐明sAT对抗CI/RI的可能分子机制,以此为基础,筛选sAT对抗CI/RI的可能药效物质,为开发和利用sAT提供理论和实验基础。方法:体内采用大鼠局灶性脑缺血/再灌注(Middle cerebral artery occlusion/reperfusion,MCAO/R)模型,体外采用HT22小鼠海马神经元细胞氧糖剥夺/复氧(Oxygen and glucose deprivation/reoxygenafion,OGD/R)模型,验证sAT的脑保护作用。采用网络药理学技术预测可能作用的通路和靶点以寻找sAT的潜在作用机制。根据网络药理学预测结果,Western blotting检测腺苷酸活化蛋白激酶(AMP-activatedprotein kinase,AMPK)、蛋白激酶B(Protein kinase B,又称Akt)、过氧化物增殖子激活-受体因子γ辅激活因子(Peroxisome proliferator-activated receptorγcoactivator-1α,PGC-1α)和叉头框蛋白O 3a(Forkhead box protein O 3a,FOXO3a)蛋白的乙酰化水平和磷酸化水平,以及下游相关蛋白的表达情况。采用siRNA干扰技术、特异性激动剂或抑制剂证明相关蛋白的调控作用。通过采用siRNA干扰技术证明sAT通过Apelin 13调控AMPK/Akt。明确sAT对P38 MAPK、ATF4和HIF-1α的作用后,采用P38 MAPK的特异性激活剂(anisomycin)和抑制剂(SB203580),或者siRNA干扰HIF-1α或ATF4表达,观察对sAT促Apelin13表达能力和脑保护作用的影响,以明确sAT是否通过HIF-1α和P38 MAPK/ATF4调控Apelin 13。为明确sAT的药效物质基础,对sAT中的单体成分进行活性筛选。采用RT-PCR、荧光报告基因细胞筛选模型,测定不同单体成分对缺氧反应元件(Hypoxia response elements,HREs)和CCAAT/增强子结合蛋白β(CCAAT/enhancer binding protein beta,C/EBPβ)转录活性的影响。最后采用siRNA干扰HIF-1α或P38 MAPK的特异性激活剂和抑制剂验证筛选出的皂苷单体的药效学作用及其是否分别通过影响HIF-1α和P38 MAPK/ATF4促进Apelin 13表达。结果:1.药效学研究。在体内,MCAO/R引起脑梗死面积显着增加(46.6±2.86%vs 0,P<0.01)、脑组织含水量增加(85.13±1.36%vs 77.6±4.03%,P<0.01)、神经功能学评分升高(4.33±0.82 vs 0,P<0.01),而sAT能够剂量依赖性的抑制脑梗死面积(34.27±3.69%,26.97±2.15%,17.57±2.72%vs 46.6±2.86%,P<0.01)、减少脑组织含水量(81.97±1.36,79.9±2.29,77.97±2.46 vs 85.13±1.36,P<0.01)、改善脑神经功能障碍(3.5±1.05,2.67±1.03,1.0±0.89 vs 4.33±0.82,P<0.01),同时,能够抑制脑组织中的氧化应激(P<0.01)和细胞凋亡水平(P<0.01)。在体外,OGD/R使细胞存活率显着下降(0.46±0.09 vs 1±0,P<0.01)、LDH释放增加(149.6±14.19 vs 39.63±8.89,P<0.01)、凋亡率增加、线粒体功能异常以及氧自由基水平增加,而sAT显着抑制细胞损伤,增加细胞内抗氧化酶表达、ATP水平,改善线粒体膜电位稳态和功能。证实sAT对缺血再灌注引起的脑损伤具有保护作用,且与降低氧化应激和改善线粒体功能关系密切。2.太白楤木中共收集31个皂苷单体,并根据结构预测到415个靶点,脑卒中筛选得到389个靶点,通过Venny分析二者交集筛选得到72个共同靶点。对72个共同靶点进行KEGG分析,获得248个生物过程,32个细胞组成,63个分子功能,对获得的104条KEGG通路分析发现,sAT调节的细胞通路包括TNF信号通路、PI3K/Akt信号通路、HIF-1信号通路、MAPK通路、FoxO通路、Toll样受体、AMPK通路和钙信号通路等。其中PI3K/Akt、AMPK、MAPK、HIF-1、Fox O等信号通路与上一章发现的抗氧化应激和线粒体稳态具有密切关系,是本研究下一章关注的重点。3.sAT通过AMPK/Akt调控SIRT1抑制氧化应激和线粒体功能障碍。sAT能够促进AMPK和Akt的磷酸化水平,同时促进SIRT1蛋白表达,以及FOXO3a和PGC-1α去乙酰化和磷酸化。通过si RNA干扰SIRT1表达,证实sAT通过SIRT1调控FOXO3a和PGC-1α乙酰化水平从而影响其活性;采用siRNA干扰Akt表达,证实sAT通过Akt促进FOXO3a和PGC-1α磷酸化水平影响其活性,同时可通过Akt调控SIRT1表达,继而影响下游蛋白的表达。siRNA干扰和抑制剂实验证实sAT对AMPK和Akt的交互调节关系。最终证明sAT通过活化AMPK/Akt促进SIRT1表达,从而调控FOXO3a和PGC-1α活性抑制线粒体损伤和氧化应激。4.sAT通过P38MAPK/ATF4和HIF-1α调控Apelin 13/AMPK/Akt。与模型组比较,sAT各剂量组使脑组织中Apln基因表达量分别增加约2.26倍、2.73倍和5.31倍,Aplnr基因表达量分别增加约1.5倍、2.75倍和3.27倍(P<0.01),同时观察到sAT能够促进Apelin 13蛋白表达,表明sAT能够促进脑细胞内Apelin 13的基因和蛋白表达。采用基因干扰Apelin 13受体证实Apelin 13在sAT调控AMPK/Akt及其下游蛋白表达发挥脑保护作用中的关键作用。为研究Apelin 13的上游调节通路,本研究关注了P38MAPK/ATF4和HIF-1α的表达情况。sAT可梯度依赖性的抑制P38 MAPK磷酸化和ATF4表达。OGD/R通过促进P38MAPK磷酸化和ATF4表达,抑制Apelin 13表达,而sAT可以逆转这些作用。sAT能够促进HIF-1α表达,而siHIF-1α使sAT的促Apelin13表达能力降低,同时对细胞的保护作用明显降低(P<0.01)。上述结果表明sAT通过促进HIF-1α表达和抑制P38 MAPK/ATF4活化上调脑细胞中Apelin 13表达。5.sAT中活性单体成分筛选。通过RT-PCR实验共筛选出12个皂苷单体对Apln基因表达具有明显的促进作用,其中6个皂苷单体(10号、14号、15号、19号、20号和21号单体)对HRE转录活性具有明显影响。Western blotting和siRNA干扰实验进一步证实这6个单体对HIF-1α蛋白表达均具有促进作用,siHIF-1α使它们显着降低对细胞的保护作用。5个皂苷单体(10号、11号、14号、19号和21号)对C/EBP转录活性具有调控作用。采用抑制剂和激活剂验证发现,10、14和19号皂苷单体是通过P38 MAPK/ATF4调控Apelin 13表达发挥细胞保护作用的。10号单体为楤木皂苷A,14号单体为去葡萄糖竹节参皂苷IVa,19号单体为竹节参皂苷IVa,这三个单体可同时影响P38 MAPK/ATF4和HIF-1α信号通路,促进Apelin 13表达。15号单体为竹节参皂苷Ib,20号单体为刺嫩芽皂苷F,21号单体为拟人参皂苷RT1可通过影响HIF-1α信号通路,促进Apelin 13表达。11号单体为楤木皂苷D和21号单体为拟人参皂苷RT1虽然对P38 MAPK/ATF4没有影响,但对C/EBPβ转录活性和Apelin13表达均有显着影响,推测其可能通过其他途径或者直接影响C/EBPβ转录活性。结论:本研究首次系统研究了sAT对CI/RI的保护作用,并借助网络药理学技术和分子生物学技术阐明了sAT发挥脑保护作用可能的分子机制,以此为基础,筛选了sAT中的皂苷单体成分,发现不同皂苷单体分别通过影响P38 MAPK/ATF4和HIF-1α信号通路共同促进Apelin 13表达,调控AMPK/Akt/SIRT1信号通路,抑制氧化应激和线粒体功能障碍,发挥脑保护作用。本研究揭示了sAT脑保护作用的药效物质基础和分子作用机制,为太白楤木的开发和应用提供理论和实验依据。
田方泽[8](2020)在《通络清脑方对缺血性卒中急性脑水肿的影响及星形胶质HMGB1/TLR4机制研究》文中研究指明缺血性脑卒中是全球高发病率和高死亡率的主要疾病之一。脑水肿是缺血性脑卒中最大的并发症之一,是大面积缺血性脑卒中患者急性期恶化和死亡的主要原因。星形胶质细胞是脑水肿的重要参与细胞,其与脑血管功能变化,与水转运蛋白的活性改变密切相关,且在脑水肿的稳态中起到重要的作用。高迁移率组1(High-mobility group box 1,HMGB1)/Toll样受体4(Toll-likereceptor4,TLR4)通路作为炎性的标志性通路,在缺血性脑卒中早期脑水肿的病程发展中起了十分重要的作用。HMGB1是炎症级联反应的有效诱导物,主要在胶质细胞上表达,引起神经水肿和诱导巨噬细胞合成肿瘤坏死因子(tumor necrosis factor α,TNF-α)、白介素-6(inter-leukin-6,IL-6)、白介素 1β(inter-leukin-β,IL-1β),导致炎症细胞的聚集和渗透,同时诱发炎症和一系列继发性组织损伤。因此,在缺血性脑水肿的研究中,星形胶质细胞HMGB1/TLR4通路对AQP4和血脑屏障的影响具有重要的意义。通络清脑方(Tong LuoQingNao,TLQN)是本实验室前期研究用来治疗缺血性脑卒中急性期脑水肿的中药新药,其主要由三七总皂苷(Panax Notoginseng Saponins,PNS)、栀子苷(Geniposide,GE),黄芩苷(Baicalin,BA)三类有效成分组成,对脑缺血的炎性反应有明显的抑制作用,具有缓解脑水肿,能降低水通道蛋白(Aquaporin-4,AQP4)的表达的作用。本课题研究TLQN及其有效组分对星形胶质细胞HMGB1/TLR4炎性通路对AQP4和血脑屏障影响,从而探寻TLQN抑制缺血性卒中脑水肿的作用机制。第一部分通络清脑方对缺血再灌注大鼠脑水肿及星形胶质HMGB1/TLR4通路和血脑屏障的影响目的:应用大鼠脑缺血再灌注模型,观察TLQN及其有效组分对缺血再灌注大鼠急性期脑水肿的影响和对星形胶质细胞HMGB1/TLR4通路及血脑屏障的影响。方法:线栓法复制大鼠脑缺血再灌注模型,随机分为假手术组(Sham),再灌注组(Cerebralischemia-reperfusion,CIR),通络清脑方(TLQN)42mg/kg 组(其中黄芩苷:栀子苷:三七总皂苷=1:12:6),三七总皂苷(PNS)13.3mg/kg组、栀子苷+黄芩苷(BA+GE)26.5mg/kg+2.2mg/kg组,手术当天给药,尾静脉注射给药2d,1次/d。设立再灌注24h、48h为观察期。1.通过体重、神经功能评分、脑干湿重和功能性核磁共振的方法;观察TLQN对脑缺血再灌注大鼠急性期脑水肿的影响;2.采用生化法检测CIR大鼠脑缺血侧皮层和血液中IL-6,IL-1β,TNF-α浓度含量;3.采用Western Blot和免疫荧光的方法,检测TLQN及其有效组分对缺血再灌注大鼠24h,48h皮层AQP4、HMGB1、TLR4、NF-κB、p-NF-κB表达及蛋白水平的变化。4.采用透射电镜和免疫组化的方法,检测TLQN及有效组分对缺血再灌注大鼠细胞肿胀及血脑屏障的影响。结果:1.体重和神经功能评分结果显示,再灌注大鼠出现明显的神经功能缺损症状,TLQN组大鼠神经功能缺损评分在24h,48h明显降低(P<0.05),PNS组和BA+GE组在48h大鼠神经功能缺损评分出现明显降低(P<0.05)。2.脑含水量结果显示:与Sham组相比,缺血再灌注24 h大鼠,脑含水量明显增加(P<0.05);TLQN组大鼠24 h后脑含水量明显降低(P<0.05);再灌注48 h后,TLQN、BA+GE组和PNS组脑含水量明显降低(P<0.05)。核磁共振结果显示:再灌注24h后CIR大鼠大脑海马、胼胝体和前皮层三个区域ADC信号明显降低(P<0.01),TLQN组、PNS组和BA+GE组大鼠前皮层和胼胝体ADC明显高于CIR组(P<0.05),而海马区域有上升趋势(P>0.05)。3.生化检测显示,CIR组大鼠缺血侧大脑皮层IL-6,IL-1β,TNF-α明显上升(P<0.01);分别给予TLQN、PNS、BA+GE,24h和48h干预后,大鼠缺血侧大脑皮层IL-6,IL-1β,TNF-α明显下降(P<0.05)4.免疫荧光结果与Western-Blots相似,与Sham组相比,CIR组大鼠缺血侧大脑皮层AQP4浓度明显升高(P<0.01),GFAP激活(P<0.01),并且HMGB1、TLR4、p-NF-κB也明显上升(P<0.01);分别给予TLQN、PNS、BA+GE,24h和48h干预后,大鼠缺血侧大脑皮层AQP4浓度显着降低(P<0.05);GFAP明显收到抑制(P<0.05),HMGB1、TLR4、p-NF-κB 含量也明显下调(P<0.05)5.透射电镜、GFAP的周长、和免疫组化Claudin-5的检测中显示,TLQN、PNS和BA+GE对缺血再灌注大鼠内皮细胞星形胶质细胞肿胀有明显的缓解作用,并且能够改善血脑屏障的紧密连接使其屏障功能得以修复。第二部分通络清脑方及其有效成分对氧糖剥夺/再复氧(Oxygen-glucose deprivation/Reperfusion,OGD/R)星形胶质细胞神经炎症及HMGB1/TLR4通路的影响目的:应用离体培养人脑星形胶质细胞与星形胶质细胞/微血管内皮细胞共培养实验方法,观察TLQN及单体对OGD/R损伤星形胶质细胞HMGB1/TLR4通路及内皮细胞紧密连接的影响。方法:1.使用正常的星形胶质细胞检测TLQN及其各有效成分(PNS、BA、GE)的药物毒性浓度,以备后续的药效实验做基础。采用CCK-8法检测星形胶质细胞活力,观察细胞形态。2.构建OGD/R细胞模型,氧糖剥夺6h/复氧复糖12h(OGD/R6/12),星形胶质细胞分为正常(Control)组和OGD/R组,药物组(TLQN、PNS、BA、GE)分别在2.5~50 μg/ml进行干预,探索TLQN及单体对OGD/R损伤的星形胶质细胞的药效及给药浓度。采用CCK-8法检测星形胶质细胞活力,观察细胞形态。3.采用生化法检测细胞培养有液IL-6,IL-1β,TNF-α的含量;Western Blot、免疫细胞荧光法检测细胞GFAP、AQP4、HMGB1、TLR4、p-NF-κB表达的变化。4.采用免疫荧光和透射电镜技术,在HA/BMECs共培养体系中发现,检测OGD/R后HA细胞的培养液可降低BMECs细胞的存活率,降低细胞间的紧密连接蛋白Claudin-5、ZO-1和影响细胞内部的影响。结果:1.通过药物毒性结合药效学实验可以看出,TLQN及其有效成分PNS、BA、GE在2.5~50μg/ml浓度内无明显毒性。2.与 OGD/R 后的 HA 细胞对比,TLQN(5μg/mL)和 PNS(10 μg/mL)干预后,细胞活力明显增强(P<0.05)且作用最佳,能够明显改善细胞状态。3.免疫荧光结果与Western-Blots结果相似:1)与Control组相比,OGD/R组HA细胞AQP4浓度明显升高(P<0.01),,并且HMGB1、TLR4、p-NF-KB也明显上升(P<0.01);给予 TLQN(5mg/kg)和 PNS(10mg/kg)干预后,HA 细胞 AQP4 浓度显着降低(P<0.05);HMGB1、TLR4、p-NF-κB含量也明显下调(P<0.01),且加入丙酮酸乙酯(EP)后,抑制了 OGD/R 组 HA 细胞 AQP4、HMGB1、TLR4、p-NF-κB 的表达。4.CCK8结果显示,GD/R后HA细胞外液对BMECs的存活率有显着的降低(P<0.05);免疫荧光结果显示,BMECs细胞间的紧密连接蛋白Claudin-5、ZO-1有明显的下降。在TLQN和PNS干预之后,BMECs的存活率上升,细胞间的Claudin-5、ZO-1的数量增加,上述结果与EP干预后的结果有一致的趋势,表明TLQN具有通过星形胶质细胞抑制内皮细胞损伤的功能。结论:通过体内和体外实验研究表明,基于“神经血管单元”理论,通络清脑可以减轻缺血再灌注大鼠急性期脑水肿,尤其是皮层水肿的作用。其机制是通过星形胶质细胞HMGB1/TLR4通路抑制AQP4表达和星形胶质细胞肿胀,同时减少水肿相关炎性因子IL-1β、IL-6、TNF-α的表达,;通络清脑方通过星形胶质细胞HMGB1/TLR4通路增加内皮细胞的紧密连接程度,改善血脑屏障功能。其作用的有效组分是活血组(三七总皂苷)。
田丹枫[9](2020)在《参知健脑方对拟血管性痴呆细胞模型的神经保护作用及机制研究》文中研究指明血管性痴呆(Vascular Dementia,VD)是痴呆常见类型之一,以记忆力进行性衰退、认知功能障碍及性格、情感等精神改变为主要临床表现。VD的病理机制与兴奋性氨基酸毒性损伤、突触可塑性改变、钙超载、氧化应激损伤及细胞凋亡等过程密切相关,早预防、早发现、早治疗可显着提高VD患者的生存率及生活质量,降低死亡率。课题组基于VD的“毒损脑络”中医创新病因病机理论并结合多年临床经验,创制了具有解毒通络作用的参知健脑方。前期动物体内实验研究表明,本方可改善VD大鼠的认知功能,修复受损海马神经元,通过调控谷氨酸突触囊泡转运关键蛋白clathrin介导的NMDA受体内吞过程,减轻谷氨酸所致神经兴奋性毒性而起到神经保护作用。但研究大多仅从单个靶点或通路评估参知健脑方对VD的干预作用,并未完全解释其药效机制;且目前尚未对其进行体外细胞实验深入分析验证,其分子机制值得更深入地探索研究。目的:基于VD“毒损脑络”理论,(1)通过网络药理学探讨参知健脑方治疗VD的药理作用及分子机制;(2)通过体外实验,筛选干预药物的适宜浓度,并探讨参知健脑方对拟VD细胞模型增殖及毒性的影响;(3)研究参知健脑方对拟VD细胞模型周期、凋亡及细胞内游离Ca2+和ROS/Superoxide水平的影响,探讨其对VD细胞模型谷氨酸兴奋性毒性的神经保护作用,并验证参知健脑方的治疗有效性及网络药理学结果的可靠性;(4)研究参知健脑方对拟VD细胞模型clathrin、RAB5B和NMDAR1表达水平的影响,探讨其是否通过调控clathrin介导的NMDA受体内吞过程发挥对VD的治疗作用,并验证网络药理学结果的可靠性。方法:第一部分:依托多种数据库检索并收集参知健脑方的入血化学成分、作用靶点和VD作用靶点,随后整合数据获得参知健脑方治病靶点。通过Cytoscape3.7.1构建参知健脑方-活性化合物-治病靶点网络图,STRING数据库构建蛋白互作网络,DAVID数据库进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。第二部分:采用谷氨酸诱导PC12细胞损伤作为VD细胞模型,采用CCK-8法和IncuCyte动态细胞成像技术筛选出谷氨酸适宜造模剂量及参知健脑方低、中、高干预剂量。参知健脑方各剂量与盐酸美金刚分别干预VD细胞模型,观察其对细胞形态、细胞增殖及毒性的作用。第三部分:采用谷氨酸诱导的PC12细胞损伤作为VD细胞模型,参知健脑方各剂量与盐酸美金刚分别干预VD细胞模型,采用流式细胞术等技术观察其对细胞周期、凋亡、细胞内游离Ca2+、活性氧和超氧化物(ROS/Superoxide)水平的影响,qRT-PCR检测caspase-3 mRNA的相对表达水平。第四部分:采用谷氨酸诱导的PC12细胞损伤作为VD细胞模型,参知健脑方各剂量与盐酸美金刚分别干预VD细胞模型。采用免疫荧光和Western blot技术分别检测clathrin、RAB5B和NMDAR1的分布和蛋白表达水平;qRT-PCR技术检测clathrin和NMDAR1在mRNA水平上的表达情况。结果:第一部分:网络药理学研究结果表明,(1)参知健脑方-活性化合物-治病靶点网络图包含3个单味药,18个活性化合物,154个治病靶点。其中,芍药苷、白芍苷和新芒果苷等活性成分关联基因较多,FGF1和FGF2位列治病靶点首位。(2)PPI网络包含154个靶点蛋白,关键蛋白涉及INS、ALB、AKT1、CASP3、JUN、PTGS2等。(3)GO富集分析共有条目4960个,其中生物过程相关条目4176个,细胞组成相关条目306个,分子功能相关条目478个。(4)KEGG富集分析共有相关通路30条,涉及MAPK信号通路、HIF-1信号通路、凋亡通路、神经活性配体-受体相互作用通路、钙信号通路等。第二部分:体外实验结果表明,(1)药物干预剂量筛选:谷氨酸适宜造模剂量为22.5 mM,参知健脑方低、中、高剂量分别为:0.05、0.1、0.2 mg/mL,盐酸美金刚干预剂量为10 μM。(2)细胞形态学:正常PC12细胞呈不规则长梭形,形态完整,突起明显,贴壁牢固;谷氨酸处理的PC12细胞呈圆球形,结构不完整,胞体皱缩,易聚集成团;突起变短或减少、消失,细胞贴壁不牢;随着时间的增加,死细胞数明显增多,细胞死亡率显着上升。与模型组相比,参知健脑方各剂量组细胞胞体均相对完整,部分细胞突起少量存在,存在突触间联系;细胞贴壁较模型组牢固;随着时间的增加,死细胞数增多不明显,细胞死亡率没有显着上升。盐酸美金刚组细胞形态较模型组略有改善。(3)CCK-8增殖实验:谷氨酸可以显着降低PC12细胞活力,抑制细胞增殖(P<0.05);参知健脑方各剂量和盐酸美金刚均可明显提高PC12细胞活力,促进细胞增殖,降低细胞毒性(P<0.01)。(4)IncuCyte增殖实验:谷氨酸可以持续增加细胞绿色荧光面积和死细胞数,死亡率呈明显上升趋势,细胞融合率持续下降;参知健脑方各剂量均可以有效减少细胞绿色荧光面积和死细胞数,死亡率降低,融合率呈上升趋势;盐酸美金刚的各项结果趋势与谷氨酸类似。(5)CFSE增殖实验:谷氨酸可以明显增高CFSE平均荧光强度(P<0.01),参知健脑方各剂量和盐酸美金刚CFSE平均荧光强度均呈减弱趋势,但差异无显着统计学意义(P>0.05)。第三部分:体外实验结果表明,(1)细胞周期:谷氨酸可以显着增加S期细胞比例,使细胞阻滞在S期(P<0.01);参知健脑方各剂量和盐酸美金刚均可以显着降低S期细胞比例(P<0.01)。(2)细胞凋亡:谷氨酸可以明显增加凋亡率(P<0.01),参知健脑方各剂量和盐酸美金刚均可以显着减少细胞凋亡(P<0.01)。(3)Ca2+和ROS/Superoxide水平:谷氨酸可明显升高细胞内Ca2+和ROS/Superoxide水平(P<0.01),参知健脑方各剂量和盐酸美金刚均可不同程度降低细胞内Ca2+和ROS水平(P<0.05,P<0.01)。(4)qRT-PCR:谷氨酸可以明显增加caspase-3 mRNA的表达水平(P<0.01);参知健脑方和盐酸美金刚均可显着降低caspase-3 mRNA的表达水平(P<0.01)。第四部分:体外实验结果表明,(1)免疫荧光:clathrin主要表达于细胞膜和细胞质;RAB5B主要表达于细胞膜和细胞质中的早期内体;NMDAR1主要表达于细胞膜和突触。谷氨酸显着降低clathrin和RAB5B的表达(P<0.01,P<0.01),增加NMDAR1的水平(P<0.01);参知健脑方各剂量均可上调clathrin、RAB5B水平(P<0.05,P<0.05),下调NMDAR1水平(P<0.05)。(2)qRT-PCR:谷氨酸可明显降低clathrin mRNA的表达(P<0.01),并增加NMDAR1 mRNA的表达水平(P<0.01);参知健脑方可明显增加clathrin的表达并显着降低NMDAR1的表达水平(P<0.01)。(3)Western Blot:谷氨酸可抑制clathrin和RAB5B的表达,明显增加NMDAR1的表达水平(P<0.01);参知健脑方各剂量均可以显着上调clathrin、RAB5B表达水平,下调NMDAR1 的水平(P<0.01)。结论:(1)参知健脑方治疗VD的作用靶点和通路机制呈现多角度、多途径、多环节的特点,其治病靶点大多与血管、神经保护及突触可塑性调节相关,且靶点与通路之间相互协同发挥作用,提示这可能是参知健脑方治疗VD的关键,为深入研究参知健脑方治疗VD的其他机制提供了新思路。(2)适宜浓度的谷氨酸可以显着促进PC12细胞增殖,但谷氨酸浓度过高会产生细胞毒性,导致细胞死亡。参知健脑方各剂量能均能明显促进细胞增殖,提高细胞活力及细胞融合率,减少死细胞数目及死亡率,减少细胞毒性损伤;均对细胞形态有一定修复作用,改善细胞贴壁不牢的状态。(3)参知健脑方能有效修复细胞周期循环,下调caspase-3的表达而减少细胞凋亡;降低细胞内Ca2+浓度而阻止Ca2+内流并增强细胞清除ROS和Superoxide的能力,减少谷氨酸毒性积累及氧化应激损伤。参知健脑方可影响上述多种途径发挥神经保护作用;验证了参知健脑方治疗VD的有效性以及网络药理学计算机预测结果的可靠性。(4)Clathrin介导的NMDA受体胞吞障碍导致谷氨酸兴奋性毒性积累,“解毒通络”的参知健脑方可改善谷氨酸损伤PC12细胞clathrin介导的NMDA受体胞吞过程而降低谷氨酸神经兴奋性毒性。其发挥神经保护的作用机制可能与上调clarhrin和RAB5B的表达,促进clathrin介导的NMDA受体胞吞过程有关。验证了参知健脑方治疗VD的有效性以及网络药理学研究结果的可靠性,为“解毒通络”法则治疗VD提供了微观证据。
刘碧原[10](2020)在《系统生物学视角下苦碟子治疗缺血性脑卒中的效应机制研究》文中进行了进一步梳理目的:缺血性脑卒中是临床常见的具有较高致死率和致残率的疾病。临床研究发现苦碟子对缺血性脑卒中具有较好的治疗效果,但对其作用机制的探查尚不全面。本课题以苦碟子治疗缺血性脑卒中的临床疗效为依据,运用MCAO/R模型和神经细胞系模型,通过整合运用蛋白质组学、高通量测序、生物信息学、分子生物学以及网络药理学等多种系统生物学研究方法,从体内和体外不同维度探查苦碟子治疗缺血性脑卒中的效应及机制。方法:(1)雄性SD大鼠45只,随机分为假手术组15只、造模组30只。造模组采用改良的线栓法复制大鼠MCAO/R模型,成模后将造模组大鼠随机分为模型组15只,苦碟子组15只。苦碟子组给药量依据成人口服苦碟子生药20g计算,在成模后每隔3h给予模型动物4mL/kg苦碟子提取物腹腔注射。假手术组和模型组给予等量的生理盐水腹腔注射。24h后观察各组动物的神经功能评分(mNSS),脑梗死面积(TTC染色),脑组织形态变化(HE染色),神经细胞凋亡情况(TUNEL染色);(2)比较各组动物大脑缺血半影区差异蛋白表达的情况,并用Western-blotting的方法验证;(3)用液质联用的方法鉴定苦碟子所含成份以及入脑成份,并运用网络药理学的方法分析苦碟子入脑成份靶点与差异蛋白靶点的交集,获得苦碟子入脑有效成份。(4)依据蛋白质组学结果,苦碟子的作用主要在于调节神经递质水平,抑制过量的兴奋性神经递质对神经元的损伤。用大鼠嗜铬细胞瘤PC12细胞系模拟神经元进行后续机制的探查,PC12细胞用DMEM F12K完全培养基在37℃,5%CO2的培养箱中培养,用NGF处理7天,刺激PC12细胞轴突生长。在PC12细胞系中使用10mM谷氨酸刺激细胞12h,复制兴奋性神经递质损伤模型,同时给予苦碟子及其入脑有效成份干预3h。对干预后的细胞用CCK-8检测细胞活力;并检测苦碟子及其入脑有效成份对PC12细胞内外谷氨酸水平的影响。(5)用苦碟子及其入脑有效成份干预细胞3h后收集细胞,用RNA-Sequencing的方法对细胞进行转录组测序。分析差异表达基因,并运用生物信息学的方法获得差异表达基因富集的生物过程及信号通路。(6)对体内的差异蛋白核心网络和体外的核心调节差异基因进行荟萃分析,获得苦碟子治疗缺血性脑卒中的核心靶点/通路,并用Western-blotting和RT-qPCR的方法对上述靶点进行验证。通过分析核心通路,获得通路之间的串扰关系,并获得苦碟子及其入脑有效成份通过核心通路调节的转录因子;用JASPAR预测与神经递质转运相关基因启动子区域与上述转录因子的结合位点;用抑制剂干预上述通路,用RT-qPCR验证苦碟子通过上述通路进行转录调控的机制。结果:(1)本研究发现,MCAO/R模型存在着明显的神经功能损伤,经过苦碟子治疗后模型动物的神经功能评分明显降低。TTC染色发现,MCAO/R模型存在着明显的脑梗死灶,苦碟子治疗后模型动物的脑梗死面积明显减小。运用HE染色进行组织学观察发现,MCAO/R模型动物的大脑皮层及纹状体区域存在着明显的组织变性,表现为细胞核皱缩,神经元空泡变性等;经过苦碟子治疗后组织变性明显好转。TUNEL染色发现,模型组动物病灶脑区及其周边的神经细胞凋亡增多;且经过苦碟子治疗后,神经细胞凋亡明显减少。(2)对各组动物缺血半影区以及相应位置进行蛋白组学分析发现,模型组和假手术组之间的差异蛋白主要富集在调节囊泡介导的胞吐作用,血小板聚集,补体激活,凋亡过程的负调控等生物学过程;蛋白所涉及的细胞结构主要包括神经元、突触、囊泡、细胞外泌体等;差异蛋白所涉及到的分子功能主要包括SNARE结合,GTPase活性等。KEGG富集分析发现模型组差异蛋白主要富集在补体和凝血级联,加压素调节水的重吸收,GABA能突触等通路。而苦碟子组和模型组的差异蛋白主要参与止血、突触小泡循环,TP53调节基因,突触小泡运输等通路及生物学过程。对苦碟子组与模型组之间的差异蛋白进行蛋白互作网络(PPI)分析后,获得了一个具有103个节点,353条边的核心网络模块。对模块中的蛋白进行GO分析发现,核心调节模块的蛋白主要涉及调节神经递质水平和囊泡的融合、胞吐和回收等生物过程。KEGG通路富集发现,核心模块蛋白主要参与调节突触小泡循环,SNARE在囊泡运输中的相互作用,谷氨酸能突触和cAMP信号通路等通路或生物学功能。(3)用液质联用的方法在苦碟子中共检测到81种成份,并且其中的9种可以在模型动物大脑中检测到。运用网络药理学方法获得9种入脑成份的靶点并与苦碟子治疗MCAO/R模型的差异蛋白进行交叉分析。在9种入脑成份中,芦丁、阿魏酸和腺苷的靶点与苦碟子体内调控的差异蛋白吻合度最高。所以我们认为,腺苷、阿魏酸和芦丁是苦碟子入脑的有效成份。(4)在用10mM谷氨酸刺激细胞12h的兴奋性神经递质毒性模型中,PC12细胞的活力被明显抑制;用苦碟子及其入脑有效成份干预后,可以明显减轻过量谷氨酸对PC12细胞活力的抑制作用。并且运用苦碟子及其入脑有效成份干预后,PC12细胞外谷氨酸水平均明显降低;苦碟子和腺苷干预后PC12细胞内谷氨酸水平明显降低,芦丁干预后PC12细胞内谷氨酸水平明显升高。(5)比较各实验组差异基因的富集分析结果发现,各实验差异基因所调控的通路既有重叠又有差异。对苦碟子及其入脑有效成份干预后PC12细胞的差异基因进行交集分析,共获得277个核心调节基因,核心调节基因主要参与通过cAMP信号通路,PI3K-Akt信号通路,钙信号通路,轴突导向等多条信号通路。对核心调控差异基因进行IPA分析发现,其主要参与调节的经典通路包括轴突导向,cAMP介导的信号传导、G蛋白偶联受体信号传导、eNOS信号通路等多方面。(6)基因测序和蛋白质组学结果共享的信号通路包括囊泡介导的运输、突触传递、神经递质转运、cAMP信号通路、血液循环、PI3K-Akt信号通路等通路及生物学过程,将上述通路定义为苦碟子的核心调控通路。用RT-qPCR验证苦碟子及其入脑有效成份干预后核心调控通路相关的基因。结果发现Nfatc4,Vamp1,Snap25,Slc6a4明显下调;Slc1a2表达升高明显;Cplx1在苦碟子干预后明显升高,在腺苷、阿魏酸和芦丁干预后降低。另外在苦碟子及其入脑有效成份干预后Crebl,Camk2g,Nr4a1和Bcl2表达升高明显;Th,Nfkb1表达明显降低。用Westrn-blotting的方法验证苦碟子和腺苷干预上述基因的蛋白表达,结果和RNA-Seq测序数据相一致。通过分析发现cAMP通路和PI3K通路存在着串扰,两条通路均参与调控Creb1和Nfkb1,并且cAMP通路还参与调节Nfatc4,上述三者编码重要的转录因子CREB,NF-κB和NFAT家族。用JASPAR预测转录因子的结合位点发现Slc1a2在基因的启动子区域同时存在Creb1和Nfkb1的结合位点;Vamp1和Snap25在基因的启动子区域存在Nfatc4的结合位点。Grin1在基因启动子区域同时存在Nfkb1和Nfatc4的结合位点。用抑制剂同时阻断cAMP通路和PI3K通路后苦碟子及其入脑有效成份对上述转录因子的调控作用消失,并伴随着对神经递质水平调节相关基因的调控作用消失。结论:上述研究表明,苦碟子对缺血再灌注损伤模型(MCAO/R)具有较好的疗效;苦碟子治疗MCAO/R模型的主要环节在于调节MCAO/R模型的神经递质稳态,抑制神经兴奋毒性,其分子机制在于苦碟子及其入脑有效成份可以同时调控cAMP通路和PI3K通路,以调节CREB、NF-κB和NFAT家族转录因子,影响其对下游Vamp1、Snap25、Slc1a2和Grin1基因的转录调节,发挥抑制囊泡的胞吐、增加兴奋性神经递质的转运并抑制其受体后传导的功能。从而抑制神经兴奋毒性,在缺血性脑卒中病理中起到对神经细胞的保护作用。
二、急性缺氧对脑损伤大鼠脑皮层代谢型谷氨酸受体1α表达的影响(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、急性缺氧对脑损伤大鼠脑皮层代谢型谷氨酸受体1α表达的影响(论文提纲范文)
(1)IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 缺血性脑卒中的疾病负担与临床治疗现状 |
1.2 缺血性脑卒中的损伤机制 |
1.2.1 细胞兴奋毒性 |
1.2.2 氧化应激和硝化应激损伤 |
1.2.3 炎症反应 |
1.2.4 细胞凋亡 |
1.2.5 细胞自噬 |
1.3 小胶质细胞广泛参与神经系统疾病的发生、发展 |
1.3.1 阿尔兹海默病 |
1.3.2 帕金森病 |
1.3.3 癫痫 |
1.3.4 脊髓损伤 |
1.4 小胶质细胞在缺血性脑卒中的研究现状 |
1.4.1 缺血性卒中时小胶质细胞上表达的受体和通道蛋白 |
1.4.2 缺血性卒中后与小胶质细胞相关性神经损伤的酶类 |
1.4.3 靶向小胶质细胞的疗法在缺血性卒中治疗中的应用 |
1.4.4 小胶质细胞活动的在体实时呈像 |
1.5 IL-4/STAT6信号通路对小胶质细胞的作用 |
1.5.1 JAK/STAT信号通路 |
1.5.2 小胶质细胞中的IL-4/STAT6信号通路介导神经功能恢复 |
第2章 脑梗塞可导致小胶质细胞极化表型和炎症因子的改变 |
2.1 前言 |
2.2 材料与方法 |
2.2.1 实验材料 |
2.2.2 实验方法 |
2.2.3 统计分析 |
2.3 实验结果 |
2.3.1 缺血性脑卒中患者血液中小胶质细胞相关炎症因子变化 |
2.3.2 缺血性脑卒中大鼠血液中小胶质细胞相关炎症因子变化 |
2.3.3 免疫荧光检测缺血半暗带小胶质细胞极化情况 |
2.4 小结 |
第3章 IL-4对急性脑梗塞大鼠的神经保护作用 |
3.1 前言 |
3.2 材料与方法 |
3.2.1 实验材料 |
3.2.2 实验方法 |
3.2.3 统计分析 |
3.3 实验结果 |
3.3.1 IL-4对大鼠tMCAO后神经功能缺损的影响 |
3.3.2 IL-4对大鼠脑梗死容积的影响 |
3.3.3 IL-4对大鼠血液中炎症因子的影响 |
3.3.4 IL-4对大鼠缺血半暗带区小胶质细胞极化表型的影响 |
3.3.5 IL-4对大鼠缺血半暗带区细胞凋亡的影响 |
3.3.6 IL-4对大鼠缺血半暗带区皮层神经元的影响 |
3.4 小结 |
第4章 IL-4诱导小胶质细胞向M2表型极化并发挥神经保护作用的机制 |
4.1 前言 |
4.2 材料与方法 |
4.2.1 实验材料 |
4.2.2 实验方法 |
4.2.3 统计分析 |
4.3 实验结果 |
4.3.1 IL-4对小胶质细胞炎症因子分泌的影响 |
4.3.2 IL-4促进小胶质细胞向M2表型极化的分子通路 |
4.3.3 IL-4对小胶质细胞极化表型的影响 |
4.3.4 IL-4对小胶质细胞内吞能力的影响 |
4.3.5 IL-4处理的小胶质细胞对OGD处理的神经元凋亡的影响 |
4.3.6 IL-4处理的小胶质细胞对OGD处理的神经元线粒体膜电位的影响 |
4.3.7 IL-4处理的小胶质细胞对OGD处理的神经元调亡蛋白表达的影响 |
4.4 小结 |
第5章 讨论 |
第6章 结论 |
参考文献 |
作者简介及科研成果 |
致谢 |
(2)动脉粥样硬化诱发的海马代谢异常影响突触可塑相关蛋白表达的机制及运动的调节作用(论文提纲范文)
摘要 |
abstract |
中英文缩略词 |
前言 |
1.问题的提出 |
2.学术思路 |
3.实验流程与技术路线 |
3.1 实验流程 |
3.2 实验技术路线 |
文献综述 动脉粥样硬化相关认知损害的发病机制及运动的调节作用研究进展 |
引言 |
1 动脉粥样硬化与认知损害 |
1.1 动脉粥样硬化概述 |
1.2 血管性认知损害概述 |
1.3 动脉粥样硬化是导致认知损害的独立风险因素 |
2 动脉粥样硬化与突触可塑性下降 |
2.1 突触可塑性与突触可塑相关蛋白 |
2.2 动脉粥样硬化对突触可塑性的影响 |
3 动脉粥样硬化影响认知功能的可能机制 |
3.1 动脉粥样硬化与脑血流量减少 |
3.2 动脉粥样硬化与脑内炎症反应加剧 |
3.3 动脉粥样硬化与脑内氧化应激加剧 |
3.4 动脉粥样硬化与白质病变 |
3.5 动脉粥样硬化与脑代谢异常 |
3.5.1 动脉粥样硬化可导致脑代谢异常 |
3.5.2 脑代谢异常对突触可塑性和认知功能的影响及其相关机制 |
4 运动对动脉粥样硬化和认知功能的调节作用 |
4.1 运动能够防止或减轻动脉粥样硬化 |
4.2 运动促进海马神经发生,改善认知功能 |
4.3 运动对动脉粥样硬化模型突触可塑性和认知的影响 |
5 结论与展望 |
参考文献 |
第一部分 动脉粥样硬化模型大鼠海马代谢改变及有氧运动的调节作用 |
引言 |
1 材料与方法 |
1.1 材料 |
1.1.1 主要试剂 |
1.1.2 主要仪器 |
1.1.3 实验对象 |
1.1.4 饲料配方 |
1.2 研究方法 |
1.2.1 实验动物建模与分组 |
1.2.2 运动干预 |
1.2.3 实验动物相关指标测量和组织样品收集 |
1.2.4 血糖和血脂四项的检测 |
1.2.5 主动脉油红O染色和HE染色 |
1.2.6 动物组织代谢组学检测 |
1.3 数据处理与统计分析 |
2 结果 |
2.1 动脉粥样硬化模型大鼠的血糖、血脂和血管形态学改变 |
2.2 有氧运动对动脉粥样硬化大鼠血糖和血脂的影响 |
2.3 动脉粥样硬化大鼠海马代谢改变 |
2.4 运动对动脉粥样硬化大鼠海马代谢的影响 |
3 讨论 |
3.1 动脉粥样硬化大鼠海马内代谢改变 |
3.1.1 糖代谢 |
3.1.2 脂肪酸代谢 |
3.1.3 胆固醇代谢 |
3.1.4 氨基酸代谢 |
3.2 运动改善动脉粥样硬化大鼠海马的异常代谢 |
4 结论与展望 |
参考文献 |
第二部分 海马代谢紊乱影响突触可塑相关蛋白表达的可能机制及有氧运动的调节作用 |
1 引言 |
2 材料与方法 |
2.1 动脉粥样硬化大鼠模型的构建和有氧运动方案 |
2.2 行为学测试 |
2.3 海马组织样本采集 |
2.4 Western-blot蛋白免疫印迹 |
2.4.1 SDS-PAGE蛋白质电泳试剂的配置 |
2.4.2 分离胶与浓缩胶的配制 |
2.4.3 Western blot实验步骤 |
2.5 数据统计与分析 |
3 结果 |
3.1 有氧运动改善动脉粥样硬化大鼠海马糖脂转运体表达 |
3.2 动脉粥样硬化大鼠空间学习记忆能力的改变及有氧运动的调节作用 |
3.3 动脉粥样硬化大鼠海马突触可塑相关蛋白的表达改变及有氧运动的调节作用 |
3.4 动脉粥样硬化大鼠代谢调节酶的改变及运动的调节作用 |
3.5 动脉粥样硬化大鼠海马AMPK表达及活性改变及有氧运动的调节作用 |
3.6 动脉粥样硬化大鼠SIRT1 表达及活性改变及有氧运动的调节作用 |
3.7 动脉粥样硬化大鼠海马内炎症信号通路的改变及运动的调节作用 |
3.8 动脉粥样硬化大鼠海马m TOR信号通路表达及活性改变及有氧运动的调节作用 |
4 讨论 |
4.1 动脉粥样硬化大鼠学习记忆能力受损和突触可塑相关蛋白表达降低 |
4.2 动脉粥样硬化诱发海马代谢异常影响突触可塑相关蛋白和空间记忆的可能机制 |
4.2.1 动脉粥样硬化大鼠海马内能源底物供给不足和代谢紊乱 |
4.2.2 动脉粥样硬化大鼠海马m TOR信号通路抑制 |
4.2.3 动脉粥样硬化大鼠海马内AMPK信号途径激活 |
4.2.4 动脉粥样硬化大鼠海马内SIRT1 表达改变 |
4.2.5 动脉粥样硬化大鼠海马NF-κB/NLRP3/IL-1β信号通路激活 |
4.3 有氧运动对动脉粥样硬化大鼠突触可塑相关蛋白的影响及可能机制 |
结论 |
参考文献 |
全文总结 |
研究创新点 |
局限性与展望 |
学习经历 |
攻读博士学位期间科研经历 |
致谢 |
(3)基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 缺血性脑卒中 |
1.1.1 缺血性脑卒中概述 |
1.1.2 缺血性脑卒中发病机制及主要病理环节 |
1.1.3 缺血性脑卒中与肠道菌群的关系 |
1.1.4 缺血性脑卒中常用药物 |
1.2 刺五加叶主要化学成分及药理作用 |
1.2.1 刺五加叶概述 |
1.2.2 刺五加叶主要化学成分 |
1.2.3 刺五加叶主要药理作用 |
1.3 代谢组学 |
1.3.1 代谢组学概述 |
1.3.2 代谢组学研究方法 |
1.3.3 脂质组学研究方法 |
1.3.4 代谢组学在缺血性脑卒中研究中的应用 |
1.3.5 基于高效同位素标记衍生化的代谢组学研究 |
1.4 本论文的研究思路、研究目的及意义 |
1.4.1 研究思路 |
1.4.2 研究目的及意义 |
第2章 刺五加叶治疗缺血性脑卒中的血清脂质组学及其神经保护作用研究 |
2.1 实验部分 |
2.1.1 药品、试剂及仪器 |
2.1.2 刺五加叶主要活性组分的制备及成分分析 |
2.1.3 缺血性脑卒中大鼠模型建立 |
2.1.4 样品采集及处理 |
2.1.5 组织病理学检查 |
2.1.6 血清脂质代谢轮廓采集 |
2.1.7 数据分析 |
2.1.8 基于UPLC-TQ/MS的神经递质定量分析 |
2.1.9 基于UPLC-TQ/MS的神经递质定量分析方法学考察 |
2.2 结果与讨论 |
2.2.1 刺五加叶主要活性组分成分分析 |
2.2.2 组织病理学检查 |
2.2.3 血清脂质组学代谢轮廓分析 |
2.2.4 血清脂质组学潜在的生物标记物鉴定 |
2.2.5 血清脂质组学通路分析 |
2.2.6 神经递质定量研究 |
2.2.7 炎症因子和氧化应激水平研究 |
2.3 小结 |
第3 章 刺五加叶治疗缺血性脑卒中粪便代谢组学研究及其对微生物-肠-脑轴的影响 |
3.1 实验部分 |
3.1.1 药品、试剂及仪器 |
3.1.2 缺血性脑卒中大鼠模型建立 |
3.1.3 样品采集及处理 |
3.1.4 粪便代谢轮廓采集 |
3.1.5 数据分析 |
3.1.6 基于UPLC-TQ/MS的大鼠粪便胆汁酸定量分析 |
3.1.7 粪便菌群的16S r RNA测序 |
3.2 结果与讨论 |
3.2.1 粪便非靶向代谢组学代谢轮廓分析 |
3.2.2 粪便非靶向代谢组学潜在的生物标记物鉴定 |
3.2.3 粪便非靶向代谢组学通路分析 |
3.2.4 基于靶向代谢组学的大鼠粪便胆汁酸的定量研究 |
3.2.5 刺五加叶对大鼠粪便菌群组成的影响 |
3.3 小结 |
第4章 刺五加叶通过对益生菌的调节作用治疗缺血性脑卒中的机制验证 |
4.1 实验部分 |
4.1.1 药品、试剂及仪器 |
4.1.2 菌群培养及菌液制备 |
4.1.3 缺血性脑卒中大鼠模型建立 |
4.1.4 样品采集及处理 |
4.1.5 粪便菌群的16S r RNA测序 |
4.1.6 大鼠脑组织中神经递质的含量测定 |
4.1.7 炎症因子及氧化应激等生化指标检测 |
4.2 结果与讨论 |
4.2.1 益生菌对缺血性脑卒中大鼠粪便菌群组成的影响 |
4.2.2 益生菌对缺血性脑卒中大鼠脑组织中神经递质水平的影响 |
4.2.3 益生菌对缺血性脑卒中大鼠脑组织及血清炎症因子和氧化应激水平的影响 |
4.3 小结 |
第5章 刺五加叶治疗缺血性脑卒中的尿液代谢组学研究 |
5.1 实验部分 |
5.1.1 药品、试剂及仪器 |
5.1.2 缺血性脑卒中大鼠模型建立 |
5.1.3 样品采集及处理 |
5.1.4 尿液代谢轮廓采集 |
5.1.5 数据分析 |
5.1.6 ELISA法对通路分析进行验证 |
5.2 结果与讨论 |
5.2.1 尿液非靶向代谢组学代谢轮廓分析 |
5.2.2 尿液非靶向代谢组学潜在的生物标记物鉴定 |
5.2.3 尿液非靶向代谢组学通路分析 |
5.2.4 刺五加叶治疗缺血性脑卒中对体内代谢通路的影响验证 |
5.3 小结 |
第6章 基于高效同位素标记衍生化的刺五加叶治疗缺血性脑卒中尿液代谢组学研究 |
6.1 实验部分 |
6.1.1 药品、试剂及仪器 |
6.1.2 缺血性脑卒中大鼠模型建立 |
6.1.3 样品采集及处理 |
6.1.4 尿液样本同位素标记衍生化 |
6.1.5 尿液代谢轮廓采集 |
6.1.6 数据分析 |
6.2 结果与讨论 |
6.2.1 尿液高效同位素标记衍生化代谢组学代谢轮廓分析 |
6.2.2 尿液高效同位素标记衍生化代谢组学潜在的生物标记物鉴定 |
6.2.3 尿液高效同位素标记衍生化代谢组学结果的科学解释 |
6.3 小结 |
第7章 结论 |
本论文创新点 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(4)舒筋健脑方对脑瘫患者认知功能影响及机制研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
第一章 文献综述 |
第一节 中医认识脑性瘫痪的研究进展 |
1 概述 |
2 病因病机 |
3 辨证分型 |
4 体质 |
5 治疗 |
6 小结 |
参考文献 |
第二节 缺血缺氧脑损伤的机制研究进展 |
1 细胞凋亡 |
2 氧化应激 |
3 兴奋性氨基酸 |
4 单胺类神经递质 |
5 炎症反应 |
6 钙离子 |
7 NO及NOS酶类 |
8 小结 |
参考文献 |
前言 |
第二章 |
第一节 基于因子和聚类分析脑瘫用药规律 |
1 资料与方法 |
2 结果 |
3 讨论 |
参考文献 |
第二节 益智仁治疗脑性瘫痪的网络药理学研究 |
1 材料与方法 |
2 结果 |
3 讨论 |
4 小结 |
参考文献 |
第三节 舒筋健脑方治疗痉挛型脑瘫临床研究 |
1 一般资料 |
2 研究方法 |
3 结果 |
4 讨论 |
参考文献 |
第四节 基于Bcl-2/Bax、Caspase-3探讨舒筋健脑方改善HIBD的机制研究 |
1 材料 |
2 实验方法 |
3 实验结果 |
4 讨论 |
参考文献 |
结语 |
致谢 |
附录 |
在学期间主要研究成果 |
(5)脂多糖诱导小鼠形成免疫耐受后对缺血性脑中风的影响(论文提纲范文)
中文摘要 |
ABSTRACT |
第一章 绪论 |
1.1 急性缺血性脑中风对中枢神经系统的影响 |
1.1.1 缺血性脑中风诱导神经元凋亡的机制 |
1.1.2 小胶质细胞与缺血性脑中风 |
1.1.3 星形胶质细胞与缺血性脑中风 |
1.1.4 少突胶质细胞与缺血性脑中风 |
1.1.5 急性缺血性脑中风的治疗策略 |
1.2 小胶质细胞的激活 |
1.2.1 缺血脑中风与小胶质细胞的激活 |
1.2.2 缺血脑中风中小胶质细胞与炎症因子的相互关系 |
1.2.3 缺血脑中风中小胶质细胞与趋化因子的相互作用 |
1.2.4 小胶质细胞的极化 |
1.2.5 缺血性脑中风发生时小胶质细胞与神经元间的相互作用 |
1.2.6 小胶质细胞的吞噬功能 |
1.3 LPS介导免疫耐受的研究概况 |
1.3.1 免疫记忆 |
1.3.2 小胶质细胞与免疫记忆 |
1.3.3 LPS诱导小胶质细胞形成免疫训练与免疫耐受 |
1.3.4 小胶质细胞形成免疫记忆的表观遗传学机制 |
1.3.5 炎症因子调控小胶质细胞的免疫记忆状态 |
1.4 D-2-脱氧葡萄糖与代谢重编程 |
1.5 IFN-γ与代谢重编程 |
1.6 本课题研究的目的及意义 |
第二章 材料与方法 |
2.1 实验材料 |
2.1.1 实验动物 |
2.1.2 BV-2细胞系 |
2.1.3 实验试剂 |
2.1.4 实验仪器 |
2.2 实验方法 |
2.2.1 LPS诱导小鼠免疫耐受模型构建 |
2.2.2 小鼠急性缺血性脑中风模型构建 |
2.2.3 小鼠灌流与取材 |
2.2.4 尼氏染色 |
2.2.5 Fluoro-jade C(FJC)染色 |
2.2.6 免疫荧光染色 |
2.2.7 原代小胶质细胞的培养 |
2.2.8 BV-2细胞的培养 |
2.2.9 LPS诱导小胶质细胞免疫耐受模型构建 |
2.2.10 氧糖剥夺与再灌注模型的建立 |
2.2.11 实时荧光定量PCR对炎症因子表达量的检测 |
2.2.12 细胞吞噬能力的测定 |
2.2.13 细胞迁移能力的测定 |
2.2.14 Brd U染色法测定细胞增殖 |
2.3 数据统计与分析 |
2.3.1 小鼠脑梗塞体积的统计 |
2.3.2 FJC阳性细胞数目的统计 |
2.3.3 免疫荧光染色细胞数目的统计 |
2.3.4 实验数据的分析 |
第三章:实验结果 |
3.1 LPS诱导小胶质细胞形成免疫耐受后对缺血性脑中风的影响 |
3.1.1 急性缺血性脑中风模型的构建 |
3.1.2 梗死体积的变化 |
3.1.3 梗死边界区退行性神经元的密度变化 |
3.1.4 梗死边界区小胶质细胞的激活情况 |
3.1.5 梗死边界区iNOS的表达量 |
3.1.6 梗死边界区ARG-1的表达量 |
3.2 体外诱导小胶质细胞形成免疫耐受后其生理状态的变化 |
3.2.1 原代小胶质细胞的培养与纯化 |
3.2.2 LPS处理原代小胶质细胞后细胞因子表达量随时间的变化 |
3.2.3 LPS诱导BV-2细胞形成免疫耐受 |
3.2.4 BV-2细胞形成免疫耐受后对其形态的影响 |
3.2.5 BV-2细胞形成免疫耐受后对细胞吞噬能力的影响 |
3.2.6 BV-2细胞形成免疫耐受后对迁移能力的影响 |
3.2.7 BV-2细胞形成免疫耐受后对细胞增殖能力的影响 |
3.3 体外诱导小胶质细胞形成免疫耐受后对氧糖剥夺再灌注的影响 |
3.3.1 原代培养小胶质细胞炎症因子在m RNA水平表达量变化 |
3.3.2 BV-2细胞炎症因子在m RNA水平表达量变化 |
3.3.3 BV-2细胞形态发生的变化 |
3.3.4 BV-2细胞吞噬能力的变化 |
3.3.5 BV-2细胞迁移能力的变化 |
3.3.6 BV-2细胞增殖水平的改变 |
3.4 LPS诱导小胶质细胞形成免疫耐受后代谢状态的变化 |
3.4.1 抑制糖酵解对BV-2细胞炎症因子表达的影响 |
3.4.2 抑制糖酵解对BV-2胞吞噬能力的影响 |
3.4.3 抑制糖酵解对BV-2细胞迁移能力的影响 |
3.4.4 抑制糖酵解对BV-2细胞增殖能力的影响 |
3.4.5 增强氧化磷酸化对BV-2细胞炎症因子表达的影响 |
3.4.6 增强氧化磷酸化对BV-2细胞吞噬能力的影响 |
3.4.7 增强氧化磷酸化对BV-2细胞迁移能力的影响 |
3.4.8 增强氧化磷酸化对BV-2细胞增殖能力的影响 |
第四章 讨论 |
4.1 LPS诱导的小鼠形成免疫耐受后对缺血性脑中风的影响 |
4.2 小胶质细胞形成免疫耐受后进行氧糖剥夺再灌注对小胶质细胞生理功能的影响 |
4.3 糖酵解与氧化磷酸化小胶质细胞免疫状态的影响 |
第五章:结论 |
5.1 研究结论 |
5.2 研究展望 |
参考文献 |
中英文缩略词表 |
在学期间的研究成果 |
致谢 |
(6)基于PERK通路探讨补阳还五汤抑制内质网应激介导的细胞凋亡减轻脑缺血再灌注损伤(论文提纲范文)
摘要 |
ABSTRACT |
英文缩写 |
第一部分 补阳还五汤对脑缺血再灌注大鼠神经损伤、内质网应激蛋白GRP78 和细胞凋亡蛋白表达的影响 |
前言 |
材料与方法 |
结果 |
附图 |
附表 |
讨论 |
小结 |
第二部分 补阳还五汤基于PERK通路抑制内质网应激介导的细胞凋亡减轻PC12 细胞缺氧缺糖/复氧复糖损伤的机制研究 |
前言 |
材料和方法 |
结果 |
附图 |
讨论 |
小结 |
结论 |
参考文献 |
综述 补阳还五汤治疗缺血性卒中的机制研究进展 |
参考文献 |
致谢 |
个人简历 |
(7)太白楤木总皂苷及其单体成分对脑卒中的作用及机制研究(论文提纲范文)
摘要 |
ABSTRACT |
缩略语对照表 |
第一章 绪论 |
1.1 太白楤木简介 |
1.1.1 太白楤木分布情况 |
1.1.2 太白楤木的主要化学成分 |
1.1.3 太白楤木皂苷的药理学作用 |
1.2 脑卒中的发病机制和治疗现状 |
1.2.1 脑卒中的发病机制 |
1.2.2 氧化应激、线粒体功能障碍和CI/RI |
1.2.3 缺血性脑卒中的治疗手段 |
1.3 中药皂苷对缺血性脑卒中的治疗作用 |
1.3.1 抑制炎症反应 |
1.3.2 抑制氧化应激 |
1.3.3 改善能量代谢 |
1.3.4 抑制细胞凋亡 |
1.3.5 改善脑血管循环 |
1.3.6 抑制兴奋性氨基酸损伤 |
1.4 Apelin13 在缺血性脑卒中治疗中的重要作用 |
1.4.1 Apln基因简介 |
1.4.2 Apelin13 具有明确的脑保护作用 |
1.4.3 Apelin和缺血再灌注损伤 |
1.5 展望 |
第二章 sAT的脑保护作用研究 |
2.1 前言 |
2.2 实验材料 |
2.2.1 实验试剂 |
2.2.2 实验仪器 |
2.3 实验方法 |
2.3.1 sAT的提取和纯化 |
2.3.2 总皂苷含量测定 |
2.3.3 动物实验 |
2.3.4 细胞实验 |
2.3.5 蛋白免疫印迹(Western blotting) |
2.3.6 统计分析 |
2.4 实验结果 |
2.4.1 sAT减轻MCAO/R引起的脑损伤 |
2.4.2 sAT减轻MCAO/R引起的脑组织凋亡 |
2.4.3 sAT抑制脑组织内氧化应激水平 |
2.4.4 sAT减轻OGD/R引起的细胞损伤 |
2.4.5 sAT抑制OGD/R引起的细胞凋亡 |
2.4.6 sAT抑制OGD/R引起的氧化应激水平 |
2.4.7 sAT保护线粒体的功能 |
2.5 讨论和小结 |
第三章 网络药理学技术筛选sAT的潜在作用靶点 |
3.1 前言 |
3.2 实验材料 |
3.3 实验方法 |
3.3.1 太白楤木皂苷单体成分及靶点信息收集 |
3.3.2 脑卒中靶点 |
3.3.3 交集靶点 |
3.3.4 共同靶点网络构建 |
3.3.5 靶点通路注释分析 |
3.4 实验结果 |
3.4.1 太白楤木皂苷靶点预测结果 |
3.4.2 脑卒中相关靶点收集 |
3.4.3 共同靶点 |
3.4.4 共同靶点PPI网络构建 |
3.4.5 基因功能富集分析 |
3.4.6 通路富集分析结果 |
3.5 讨论和小结 |
第四章 sAT通过调控AMPK/Akt信号通路发挥脑保护作用 |
4.1 前言 |
4.2 实验材料 |
4.2.1 实验试剂 |
4.2.2 实验仪器 |
4.3 实验方法 |
4.3.1 细胞培养 |
4.3.2 细胞转染 |
4.3.3 抑制剂的使用 |
4.3.4 免疫沉淀技术 |
4.3.5 Western blotting检测蛋白表达 |
4.3.6 线粒体膜电位测定 |
4.3.7 ATP含量测定 |
4.3.8 细胞存活率测定 |
4.3.9 细胞凋亡率测定 |
4.3.10 统计分析 |
4.4 实验结果 |
4.4.1 sAT对 AMPK和 Akt的激活作用 |
4.4.2 sAT对 SIRT1/FOXO3/PGC-1 信号通路的激活作用 |
4.4.3 sAT通过Akt调控SIRT1 信号通路 |
4.4.4 sAT对 AMPK和 Akt的交互调节作用 |
4.5 讨论和小结 |
第五章 sAT通过P38 MAPK/ATF4和HIF-1α调控Apelin 13/AMPK/Akt信号通路 |
5.1 前言 |
5.2 实验材料 |
5.2.1 实验试剂 |
5.2.2 实验仪器 |
5.3 实验方法 |
5.3.1 侧脑室注射给药 |
5.3.2 sAT处理 |
5.3.3 MCAO/R模型 |
5.3.4 TTC染色 |
5.3.5 神经功能学评分 |
5.3.6 脑组织含水量 |
5.3.7 S-100β和NSE含量测定 |
5.3.8 Western blotting测定蛋白表达 |
5.3.9 RT-PCR测定Apln和 Aplnr mRNA表达 |
5.3.10 抑制剂和激活剂使用方法 |
5.3.11 细胞转染 |
5.3.12 细胞凋亡率测定 |
5.3.13 ROS含量 |
5.3.14 细胞存活率 |
5.3.15 线粒体膜电位 |
5.3.16 统计分析 |
5.4 实验结果 |
5.4.1 sAT促进Aplein13 蛋白和基因的表达 |
5.4.2 Apelin13对MCAO/R引起的脑损伤具有保护作用 |
5.4.3 sAT通过Apelin13调控AMPK/Akt信号通路 |
5.4.4 sAT对 P38 MAPK和 ATF4 表达的影响 |
5.4.5 sAT通过抑制P38 MAPK/ATF4 促进Apelin13 表达 |
5.4.6 sAT对 HIF-1α表达的影响 |
5.4.7 sAT通过上调HIF-1α促进Apelin13 表达 |
5.5 讨论和小结 |
第六章 筛选太白楤木皂苷的主要活性成分并进行验证 |
6.1 前言 |
6.2 实验材料 |
6.2.1 化合物 |
6.2.2 实验试剂 |
6.2.3 实验仪器 |
6.3 实验方法 |
6.3.1 细胞OGD/R模型 |
6.3.2 RT-PCR测定单体对Apln表达的影响 |
6.3.3 细胞转染 |
6.3.4 荧光素酶报告基因检测 |
6.3.5 Western blotting |
6.3.6 统计分析 |
6.4 实验结果 |
6.4.1 不同皂苷单体对Apln基因表达的影响 |
6.4.2 不同皂苷单体对HRE的调控作用 |
6.4.3 不同皂苷单体对C/EBPβ的调控作用 |
6.4.4 皂苷单体分别对HIF-1α的调控作用验证 |
6.4.5 皂苷单体分别对P38 MAPK/ATF4 的调控作用验证 |
6.5 讨论和小结 |
总结与展望 |
创新点 |
参考文献 |
攻读博士/硕士学位期间取得的科研成果 |
致谢 |
作者简介 |
(8)通络清脑方对缺血性卒中急性脑水肿的影响及星形胶质HMGB1/TLR4机制研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
文献综述 |
综述一 高迁移率组1(HMGB1)在缺血性中风及其相关疾病研究进展 |
References |
综述二 星形胶质细胞维持大脑中水平衡的作用 |
References |
综述三 神经血管单元在缺血性脑水肿中作用机制和中药对其治疗的研究进展 |
References |
前言 |
第一部分 通络清脑方对缺血再灌注大鼠皮层脑水肿及星形胶质HMGB1/TLR4通路和血脑屏障的影响 |
第一节 通络清脑方对缺血再灌注大鼠急性期水肿的影响 |
材料与方法 |
结果 |
讨论与小结 |
第二节 通络清脑方对缺血再灌注大鼠24h星形胶质细胞HMGB1/TLR4通路研究 |
材料和方法 |
结果 |
讨论与小结 |
第三节 通络清脑方对缺血再灌注大鼠48h星形胶质细胞HMGB1/TLR4通路研究 |
材料和方法 |
结果 |
讨论与小结 |
第四节 通络清脑方对缺血再灌注大鼠血脑屏障保护作用 |
材料和方法 |
结果 |
讨论与小结 |
第一部分 小结 |
第二部分 通络清脑方及其有效成分对OGD/R星形胶质细胞神经炎症及HMGB1/TLR4通路的影响 |
第一节 通络清脑方及其有效成分对OGD/R损伤的星形胶质细胞的保护作用 |
材料和方法 |
结果 |
讨论与小结 |
第二节 抑制HMGB1后,TLQN和PNS对OGD/R损伤HA细胞HMGB1/TLR4/NF-κB通路及水肿相关炎性相关因子的作用机制研究 |
材料方法 |
结果 |
讨论与小结 |
第三节 抑制HMGB1后,TLQN和PNS对OGD/R损伤HA和BMECs细胞共培养紧密连接的研究 |
材料和方法 |
结果 |
讨论与小结 |
第二部分 小结 |
结语 |
个人简历 |
致谢 |
参考文献 |
附录 通络醒脑方主要成分的含量测定 |
(9)参知健脑方对拟血管性痴呆细胞模型的神经保护作用及机制研究(论文提纲范文)
摘要 |
ABSTRACT |
英文缩略词表 |
文献综述 |
综述一 参知健脑方各组分药物改善认知机制研究 |
1 人参 |
1.1 中医认识 |
1.2 化学成分 |
1.3 改善认知机制 |
2 知母 |
2.1 中医认识 |
2.2 化学成分 |
2.3 改善认知机制 |
3 赤芍 |
3.1 中医认识 |
3.2 化学成分 |
3.3 改善认知机制 |
参考文献 |
综述二 神经元突触囊泡内吞途径对神经系统疾病的影响 |
1 网格蛋白介导的内吞作用(CME)与神经系统疾病 |
1.1 网格蛋白包被组装 |
1.2 质膜内陷和凹窝形成 |
1.3 凹陷收缩和剪切 |
1.4 囊泡去包被 |
2 Kiss and run途径 |
3 不依赖网格蛋白的大量内吞作用(clathrin-independent bulk endocytosis,CIE) |
4 超速内吞作用 |
5 讨论与展望 |
参考文献 |
前言 |
第一部分 基于网络药理学的参知健脑方治疗血管性痴呆机制研究 |
1 研究材料 |
1.1 数据库 |
2 研究方法 |
2.1 参知健脑方入血活性化学成分的检索与筛选 |
2.2 参知健脑方药物成分-靶点、VD疾病-靶点及参知健脑方治病靶点的预测 |
2.3 参知健脑方活性成分-VD-靶点的网络构建 |
2.4 基因本体论(GO)功能富集和京都基因与基因组百科全书(KEGG)通路富集分析 |
3 研究结果 |
3.1 参知健脑方潜在入血活性化学成分的筛选结果 |
3.2 参知健脑方药物成分-靶点、VD疾病-靶点及参知健脑方治病靶点预测结果 |
3.3 参知健脑方-活性成分-VD靶点的网络构建 |
3.4 GO功能及KEGG通路富集分析结果 |
4 讨论 |
4.1 中医药研究与网络药理学 |
4.2 参知健脑方的理法方药分析 |
4.3 参知健脑方的网络药理学分析 |
5 小结 |
第二部分 参知健脑方和谷氨酸干预浓度筛选及其对拟VD细胞模型增殖及毒性的影响 |
1 实验材料 |
1.1 实验对象 |
1.2 主要实验药品及试剂 |
1.3 主要仪器设备及耗材 |
1.4 主要试剂的配制 |
2 实验方法 |
2.1 PC12细胞培养 |
2.2 谷氨酸诱导PC12细胞损伤的最适宜造模浓度筛选及参知健脑方低、中、高剂量适宜浓度筛选(CCK-8法) |
2.3 谷氨酸造模适宜浓度及干预药物适宜浓度的筛选验证(IncuCyte长时间动态活细胞成像及功能分析系统) |
2.4 谷氨酸诱导损伤PC12细胞模型的建立及分组给药 |
2.5 CCK-8法检测各组细胞增殖及毒性 |
2.6 IncuCyte长时间动态活细胞成像及功能分析系统检测各组细胞增殖及毒性2.7 CFSE细胞增殖实验 |
2.7 CFSE细胞增殖实验 |
2.8 统计学分析 |
3 研究结果 |
3.1 生理状态下PC12细胞的形态学特征 |
3.2 不同浓度谷氨酸和参知健脑方溶液对PC12细胞增殖及毒性的影响 |
3.3 参知健脑方对拟VD细胞模型的增殖及毒性影响 |
3.4 CFSE细胞增殖实验结果 |
4. 讨论 |
4.1 “毒损脑络”与VD |
4.2 “毒损脑络”的现代生物学内涵 |
4.3 “解毒通络”是治疗VD的重要法则 |
4.4 谷氨酸诱导损伤PC12细胞模型的建立 |
4.5 参知健脑方对谷氨酸损伤PC12细胞的增殖及毒性作用 |
5 小结 |
第三部分 参知健脑方对拟VD细胞模型周期、凋亡、钙离子浓度及活性氧的影响 |
1 实验材料 |
1.1 实验对象 |
1.2 主要实验药品及试剂 |
1.3 主要仪器设备及耗材 |
1.4 主要试剂的配制 |
2 实验方法 |
2.1 PC12细胞培养 |
2.2 谷氨酸损伤的PC12细胞模型的建立及各组给药 |
2.3 流式细胞术检测PC12细胞周期 |
2.4 流式细胞术检测PC12细胞凋亡 |
2.5 高内涵细胞成像分析系统检测PC12细胞内游离钙离子浓度、活性氧及超氧化物的水平 |
2.6 qRT-PCR技术检测PC12细胞caspase-3 mRNA的相对表达水平 |
2.7 统计学分析 |
3 研究结果 |
3.1 PC12细胞周期检测结果 |
3.2 PC12细胞凋亡检测结果 |
3.3 PC12细胞内游离钙离子浓度、活性氧及超氧化物的水平检测结果 |
3.4 参知健脑方对谷氨酸损伤PC12细胞caspase-3 mRNA表达水平的影响 |
4 讨论 |
4.1 参知健脑方与谷氨酸损伤的PC12细胞周期阻滞 |
4.2 参知健脑方与谷氨酸损伤的PC12细胞凋亡 |
4.3 参知健脑方与谷氨酸诱导的PC12细胞内钙超载及氧化应激损伤 |
4.4 “解毒通络”法则的部分生物学内涵 |
5 小结 |
第四部分 参知健脑方对拟VD细胞模型clathrin介导的NMDA受体胞吞过程的作用机制研究 |
1 实验材料 |
1.1 实验对象 |
1.2 主要实验药品及试剂 |
1.3 主要仪器设备及耗材 |
1.4 主要试剂的配制 |
2 实验方法 |
2.1 细胞免疫荧光技术检测PC12细胞clathrin、RAB5B和NMDAR1的分布和表达水平 |
2.2 qRT-PCR检测PC12细胞clathrin mRNA和NMDAR1 mRNA的表达水平 |
2.3 Western Blot检测PC12细胞clathrin、RAB5B及NMDAR1的表达水平 |
3 研究结果 |
3.1 PC12细胞的细胞免疫荧光检测结果 |
3.2 PC12细胞的qRT-PCR检测结果 |
3.3 PC12细胞的Western Blot检测结果 |
4 讨论 |
4.1 参知健脑方与clathrin介导的细胞内吞作用 |
4.2 参知健脑方与NMDA受体的内吞过程 |
4.3 “解毒通络”法则的部分生物学内涵 |
5 小结 |
结语 |
创新点 |
参考文献 |
附录 |
致谢 |
在学期间主要研究成果 |
(10)系统生物学视角下苦碟子治疗缺血性脑卒中的效应机制研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
文献综述 |
综述一 基于中医“平衡”思想认识缺血性脑卒中神经细胞损伤的病理机制 |
参考文献 |
综述二 苦碟子治疗缺血性脑卒中临床研究进展 |
参考文献 |
前言 |
参考文献 |
实验研究 |
研究一 苦碟子治疗缺血性脑卒中的效应研究 |
1 材料 |
2 方法 |
3 结果 |
3.1 苦碟子对缺血再灌注损伤模型大鼠神经功能评分的改善作用 |
3.2 苦碟子对缺血再灌注损伤模型大鼠脑组织形态学的改善作用 |
3.3 苦碟子对缺血再灌注损伤模型大鼠病灶脑区细胞凋亡的改善作用 |
4 讨论 |
参考文献 |
研究二 缺血再灌注模型大鼠缺血半影区蛋白表达谱的变化以及苦碟子的作用 |
1 材料 |
2 方法 |
3 结果 |
3.1 缺血再灌注损伤模型大鼠缺血半影区蛋白质表达谱分析 |
3.2 苦碟子治疗后模型大鼠缺血半影区蛋白质表达谱分析 |
3.3 苦碟子治疗缺血再灌注损伤的关键靶蛋白验证 |
4 讨论 |
参考文献 |
研究三 苦碟子主要成份鉴定和网络药理学研究 |
1 材料 |
2 方法 |
3 结果 |
3.1 苦碟子所含成份的测定 |
3.2 苦碟子入脑成份的鉴定 |
3.3 苦碟子入脑成份靶标的预测与分析 |
4 讨论 |
参考文献 |
研究四 苦碟子对神经细胞兴奋毒性损伤的改善作用 |
1 材料 |
2 方法 |
3 结果 |
3.1 不同浓度谷氨酸对PC12细胞活力的影响 |
3.2 苦碟子及其入脑有效成份对于神经细胞兴奋毒性的保护作用 |
3.3 苦碟子及其入脑有效成份对于神经细胞内外谷氨酸水平的影响 |
4 讨论 |
参考文献 |
研究五 苦碟子及其入脑有效成份干预PC12细胞后的转录组测序 |
1 材料 |
2 方法 |
3 结果 |
3.1 测序数据过滤及参考基因对比 |
3.2 基因定量分析 |
3.3 各实验组差异基因富集分析 |
4 讨论 |
参考文献 |
研究六 苦碟子调节神经递质水平治疗缺血性脑卒中的机制探索 |
1 材料 |
2 方法 |
3 结果 |
3.1 差异蛋白质网络核心模块与核心调节基因列表的富集荟萃分析 |
3.2 核心调控通路中基因表达量的验证 |
3.3 核心调控通路的相关性网络分析 |
3.4 通路调控转录因子与下游相关基因关系的预测 |
3.5 抑制剂干预后对苦碟子及其入脑有效成份调控效果的影响 |
4 讨论 |
参考文献 |
结语 |
1 本研究的思路设计与技术应用 |
2 体内实验探查缺血性脑卒中的病理变化及苦碟子的治疗效果 |
3 体外实验探查苦碟子调节神经递质水平的分子机制 |
4 整合体内外结果阐释苦碟子治疗缺血性脑卒中的分子机制 |
5 本课题的创新点与不足 |
参考文献 |
致谢 |
在学期间主要研究成果 |
四、急性缺氧对脑损伤大鼠脑皮层代谢型谷氨酸受体1α表达的影响(论文参考文献)
- [1]IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究[D]. 侯坤. 吉林大学, 2021(01)
- [2]动脉粥样硬化诱发的海马代谢异常影响突触可塑相关蛋白表达的机制及运动的调节作用[D]. 刘蓓蓓. 上海体育学院, 2021(09)
- [3]基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究[D]. 汪戎锦. 吉林大学, 2021(01)
- [4]舒筋健脑方对脑瘫患者认知功能影响及机制研究[D]. 赵亚林. 北京中医药大学, 2021(01)
- [5]脂多糖诱导小鼠形成免疫耐受后对缺血性脑中风的影响[D]. 瞿源. 兰州大学, 2021(09)
- [6]基于PERK通路探讨补阳还五汤抑制内质网应激介导的细胞凋亡减轻脑缺血再灌注损伤[D]. 侯晓婵. 承德医学院, 2021(01)
- [7]太白楤木总皂苷及其单体成分对脑卒中的作用及机制研究[D]. 段佳林. 西北大学, 2020(01)
- [8]通络清脑方对缺血性卒中急性脑水肿的影响及星形胶质HMGB1/TLR4机制研究[D]. 田方泽. 北京中医药大学, 2020(04)
- [9]参知健脑方对拟血管性痴呆细胞模型的神经保护作用及机制研究[D]. 田丹枫. 北京中医药大学, 2020(04)
- [10]系统生物学视角下苦碟子治疗缺血性脑卒中的效应机制研究[D]. 刘碧原. 北京中医药大学, 2020(04)