机器学习算法小论文

机器学习算法小论文

问:机器学习
  1. 答:机器学习是人工智能的一个子集。
    这项技术的主要任务是指导计算机从数据中学习,然后利用经验来改善自身的性能,不需要进行明确的编程。在机器学习中,算法会不断进行训练,从大型数据集中发现模式和相关性,然后根据数据分析结果做出最佳决策和预测。
    特点
    机器学习应用具有自我演进能力,它们获得的数据越多,准确性会越高。机器学习技术的应用无处不在,比如我们的家居生活、购物车、娱乐媒体以及医疗保健等。
    机器学习算法能够识别模式和相关性,这意味着它们可以快速准确地分析自身的投资回报率。对于投资机器学习技术的企业来说,他们可以利用这个特性,快速评估采用机器学习技术对运营的影响。
  2. 答:机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
    机器学习有下面几种定义:
    (1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
    (2)机器学习是对能通过经验自动改进的计算机算法的研究。
    (3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
    相关信息:
    机器学习实际上已经存在了几十年或者也可以认为存在了几个世纪。追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链,这些构成了机器学习广泛使用的工具和基础。1950年(艾伦.图灵提议建立一个学习机器)到2000年初(有深度学习的实际应用以及最近的进展,比如2012年的),机器学习有了很大的进展。
问:如何学习机器学习的一点心得
  1. 答:学习之前还是要了解下目前工业界所需要的机器学习/人工智能人才所需要必备的技能是哪些?你才好针对性地去学习。正好我前两天刚听了菜鸟窝(一个程序猿的黄埔军校)的一位阿里机器学习算法工程师的课,帮助我理清了思路,在此分享下。
    ①机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。
    ②数据分析里需要应用到的内容也需要掌握,但不是网上所说的从0开始帮你做数据分析的那种,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等等
    补足了以上数学和数据挖掘基本知识,才可以正式进行机器学习算法原理的学习。
    ③算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
    ④最后需要对人工智能有全局的认知,包括机器学习、深度学习两大模块,相关的算法原理、推导和应用的掌握,以及最重要算法思想。
    菜鸟窝老师还给出了这样一个学习路线图,你也可以看看。
    网络教程还是挺多的,就看怎么学习了,不过遇到比较好的老师带,会少走很多弯路。如果经济上压力不大,建议可以去报一下菜鸟窝的机器学习班,毕竟人家老师都是BAT实战的,知道企业中真正要用到的东西。
    不知道有没帮到你?
  2. 答:先看看相关的图书:要有好几本作为参考,最好是角度差异大、深浅程度不同,比如系统的导论式的、深入的有推导的、浅出的手把手的。它要充当不同学习过程中的工具书。
    网络教程:比如Andrew Ng的、各种专题的博客,有针对地找相应的教程,相对着看,网络资源比如51cto学院的课程跟书的表达方式毕竟是不一样的,也是很有益的信息源。
    paper:比如学CNN的时候,就搜一堆论文来,集中一段时间看一轮,一定要有针对性,带着很明确的问号去看。
    开源资源:很多很多东西,其实都有人做出来开源了,直接拿来用,一边用一边理解,甚至可以学习源码。
    关注这个领域:关注相关的会议期刊,关注大牛们(Hinton、Bengio、LeCun等)的动向,微博加一堆领域大牛每天看一眼他们分享什么上来。
    基础知识:线代、统计、概率、数学分析;信息论方面基本概念要理解,比如要知道相对熵是什么意思和怎么算;凸优化和最优估计相关内容,在各种各样问题中都会遇到,学好了可以帮大忙。
    机器学习主要就是找到目标函数并且做参数估计,虽然有很多现成工具,但是不熟悉优化问题的话,会很抓瞎。
    熟悉几个模型:神经网络(SAE、RBM、CNN等)、SVM、最大熵、CRF、随机森林、GMM等等。了解不同应用场景下各种模型有什么优劣,挑一些自己以后可能常用到的多练习。
机器学习算法小论文
下载Doc文档

猜你喜欢