一、锡石在热液过程中的运移形式(1984)(论文文献综述)
方维萱,郭玉乾,贾润幸,童祥,马振飞[1](2021)在《论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系》文中研究表明采用构造岩相学分带和变形筛分、宏观与微观构造岩相学研究相结合的方法,对云南个旧矿集区构造和叠加成矿系统进行研究,深入揭示了该矿集区内锡铜钨钴铯铷多金属战略矿产富集机制、叠加成矿作用与构造岩相学结构样式之间的内在关系。研究认为,该区发育前岩浆侵入期三叠纪弧后裂谷盆地、同岩浆侵入期岩浆侵入构造系统和构造样式、后岩浆侵入期岩溶构造样式,它们在不同时间域内发生了异时同位叠加成相成矿与同时异相分异作用,对个旧叠加成矿系统和锡铜钨钴铯铷多金属成矿作用具有显着不同的控制作用。锡铜钨铯铷多金属叠加成矿系统具有9个垂向构造岩相分带结构样式,从深到浅依次为:浅色花岗岩相(VTZ8)和岩浆气成热液结晶核相(VTZ9)为黑云母花岗岩(γK2a-b-c)同岩浆侵入期构造岩相带,分布在花岗岩侵入体顶部和边部;岩浆接触交代构造岩相带矽卡岩化相-矽卡岩相带(VTZ7),是同岩浆侵入期地层-岩浆系统耦合反应的构造岩相带;富含残余岩浆的高温气液体系发生了岩浆-气液隐爆角砾岩化,形成进入个旧组内岩浆热流柱构造和电气石热液隐爆角砾岩相带(VTZ6);同岩浆侵入期在个旧组内构造-流体耦合作用,形成了上覆断褶式碳酸盐岩层(VTZ4)和碎裂岩化大理岩化相-电气石碎裂岩化大理岩相带(VTZ5)、远端的似层状碎裂岩化相含锡白云岩(VTZ3);三叠纪弧后裂谷盆地内碱性苦橄岩-碱性火山岩相带和火山喷发机构为前岩浆侵入期构造;云贵高原侵蚀面(VTZ1)和表生岩溶构造系统(VTZ2)为后岩浆侵入构造系统,它们叠加在同岩浆侵入构造系统(VTZ3、VTZ4、VTZ5、VTZ6、VTZ7、VTZ8、VTZ9)之中。这些新成果为该矿集区深部探测和隐伏构造岩相的预测建模提供了新的理论依据。
王臻[2](2021)在《川西甲基卡伟晶岩型锂矿床岩浆—热液演化与成矿的矿物学示踪》文中进行了进一步梳理川西甲基卡花岗伟晶岩型稀有金属矿床位于我国松潘-甘孜锂成矿带中,因其巨量锂资源而世界闻名,对其成矿机制的研究具有重要的理论与现实意义。矿区内,伟晶岩围绕区内唯一出露的二云母花岗岩成群、成组地分布,自岩体向外依次产出微斜长石型伟晶岩(Ⅰ)→微斜长石钠长石型伟晶岩(Ⅱ)→钠长石型伟晶岩(Ⅲ)→锂辉石型伟晶岩(Ⅳ)→锂云母(或白云母)型伟晶岩(Ⅴ)伟晶岩,本文选择各区域分带中的代表性伟晶岩脉来剖析甲基卡伟晶岩的岩浆-热液演化过程,其中:308号脉(Ⅲ带)是区内出露面积最大的伟晶岩脉,同时分带性最好,矿床规模也较大;134号脉(Ⅳ带)为区内矿床品位最高,同时矿床规模大、工作程度最高的锂矿脉。本文以这两条脉为重点研究对象,同时结合矿区内其它代表性伟晶岩脉(34号脉-Ⅰ带,33号脉-Ⅱ带,104号脉-Ⅲ带,668号脉-Ⅳ带,528号脉-Ⅴ带),主要利用光学显微镜、扫描电镜和电子探针等多种矿物学观察和分析技术,对各伟晶岩脉中重要贯通性造岩矿物白云母和主要矿石矿物锂辉石,以及其他稀有金属矿物(如铍矿物)和副矿物(如磷酸盐类)的结晶演化历史和矿物学行为进行研究,拟精细分析伟晶岩脉成岩、成矿过程中熔流体的物理化学条件,并判定甲基卡稀有金属伟晶岩的分异演化程度和和示踪其岩浆-热液演化过程,从而为甲基卡甚至整个松潘-甘孜造山带的锂成矿机制提供重要的理论依据。主要取得的认识如下:(1)通过详细的矿物学研究,首次在甲基卡地区发现透锂长石和铯云母,并提出透锂长石与锂辉石的成因联系,丰富了国内富锂伟晶岩的类型,扩充了伟晶岩型锂矿的矿物学研究内容;(2)应用锂霞石—锂辉石—透锂长石温压计,并结合伟晶岩相平衡关系(温压条件)和前人工作所测得甲基卡矿区伟晶岩锂辉石流体包裹体温压条件,限制甲基卡矿床稀有金属伟晶岩脉成矿的P-T条件,与国内外其它伟晶岩型锂矿床相比具有独特性;(3)分析了甲基卡伟晶岩内部结构带成因,提出岩浆分异结晶作用控制伟晶岩的内部分带;在高分异的伟晶岩中(Ⅳ类型),内部结构带则主要为过冷却作用结晶的结果;(4)确定了甲基卡伟晶岩初始熔体性质和流体演化特征:甲基卡自低类型至高类型伟晶岩,具有初始熔体锂含量逐渐增加、F含量始终较低,以及岩浆-热液演化程度逐渐增高的特征。其中,中等分异伟晶岩(Ⅲ型),熔体中的Li需富集至岩浆-热液阶段成矿,成矿性取决于伟晶岩内部分异演化程度;高分异伟晶岩(Ⅳ型)初始熔体锂含量高,内部分带性和化学分异不明显,均具有较好的成矿性。流体演化特征:依据锂辉石、磷锰锂矿的蚀变序列以及磷灰石的矿物化学特征,提出晚期流体从碱交代阶段的富K、Na流体演化至酸交代阶段的富H、P流体,且晚期流体性质(富P)及规模有利于锂辉石的保存。(5)探索了甲基卡锂成矿的关键控制因素:(1)初始熔体性质为富锂或锂过饱和;(2)出溶流体规模有限、热液阶段不发育;(3)晚期出溶流体具有富P性质。
刘永超[3](2021)在《过铝质花岗岩类矿床中碳酸盐/CO2对稀有金属成矿的作用》文中指出稀有金属(Li、Be、Nb、Ta、Zr、Hf、Sr、Rb、Cs,国际上归类通常包括W和Sn)是战略性关键矿产资源。加强对稀有金属富集机理的研究,对地质找矿和矿产资源勘查具有重要意义。本论文结合典型花岗岩类稀有金属矿床流体包裹体研究,通过利用热液金刚石压腔开展(HDAC)高温高压成矿模拟实验,结合拉曼等分析技术,对碳酸盐/CO2在稀有金属成矿过程中的作用进行了探究。本论文取得的主要认识如下:(1)流体包裹体研究显示,钨锡和锂等稀有金属矿床的成矿流体常具有含CO2/碱金属碳酸盐的特征,并显示出与矿化关系密切。通过对比分析赣南淘锡坑钨矿床“地下室”和“五层楼”的流体特征,发现黑钨矿的沉淀富集与含矿流体发生不混溶作用造成的CO2散逸有关。拉曼光谱分析显示,不同伟晶岩矿物流体包裹体的流体相和气相中通常含有CO2。在Morrua Mine钽锰矿,Naipa Mine、Muiane和Nuaparra伟晶岩晚期石英(莫桑比克Alto Ligonha District)中,流体包裹体水溶液相含有HCO3-;Naipa Mine石榴石和Morrua Mine绿柱石中发育有含方解石族子矿物的流体包裹体。在乌克兰Khoroshiv District某伟晶岩黄玉中的流体包裹体内鉴定出了方解石族矿物和水草酸钙石(whewellite,Ca C2O4?H2O)。据笔者所知,本次水草酸钙石的鉴定是其在过铝质花岗伟晶岩中产出的首次发现报道,被解释为含碳组分(如CO)与碱性流体反应的产物。流体包裹体证据指示出,在富锂伟晶岩等过铝质花岗岩伟晶岩形成演化过程中存在富碳酸氢根过碱性流体。(2)高温高压实验结果显示,黑钨矿可以溶解于含CO2和碱金属碳酸盐(如Li2CO3,Na2CO3)高温热液。拉曼分析表明,溶解的钨主要以WO42-形式赋存,碱金属碳酸盐对提高钨元素溶解度的作用归因于其水解形成的碱性条件。含CO2和碱金属碳酸盐热液是黑钨矿结晶生长的有利介质,黑钨矿结晶表现出受温度压力条件控制明显,晶体形态随温压条件的降低呈现出由粗大柱状、针柱状、到毛发状的变化规律,且条件过低不利于黑钨矿结晶(如低于~200 MPa)。实验结果表明,成矿流体中的CO2/碱金属碳酸盐是钨元素迁移富集的有利组分。温度的降低和碱金属碳酸盐的消耗,如以CO2形式散逸或碳酸盐的沉淀,可能是制约黑钨矿沉淀富集的重要因素。(3)实验研究表明,在碱金属碳酸盐(如Li2CO3,Na2CO3)碱性热水溶液中,二氧化锡主要以Sn(OH)62-形式溶解赋存。实验降温过程中结晶出长柱状锡石。晶体生长较快,长轴方向平均生长速率为0.6×10-6–8.22×10-6 cm/s,平均体积生长速率为3.40–19.07μm3/s。结晶生长条件主要为400–850°C,300–850 MPa,生长停止条件近于稀有金属伟晶岩的形成条件。结晶实验中观测到的锡石结晶特征与锡矿化伟晶岩中产出的锡石特征相一致,指示出碱金属碳酸盐可能是制约花岗伟晶岩中锡元素迁移富集的重要组分。实验结果显示,锡元素至少在碱性热液流体中可以以Sn(IV)形式有效迁移。(4)运用HDAC和激光拉曼,实验探究了含锂辉石伟晶岩矿物组合在富CO2流体中的稳定性行为和碳酸盐在花岗伟晶岩中的形成条件,分析碳酸盐/CO2在稀有金属花岗伟晶岩成矿中的作用。实验中加热草酸溶液形成富CO2流体,锂辉石性质稳定,未发生明显反应变化(实验最高温度600–800°C)。加热草酸盐或碳酸氢盐水溶液形成富CO2和HCO3-过碱性流体,锂辉石(和锂云母)发生强烈溶蚀交代,在其中一组实验低温恒温过程中有扎布耶石(Li2CO3)形成。此外,伟晶岩造岩矿物石英和云母和碳酸锂水溶液反应可以形成锂辉石。实验结果表明,锂辉石中含扎布耶石等矿物的富晶体包裹体的形成需要捕获流体为富碳酸氢根过碱性流体,进一步揭示出碱金属碳酸盐可能是制约富锂等稀有金属花岗岩浆发生伟晶岩型矿化的关键组分之一。含CO2和碱金属碳酸盐流体是钨锡元素溶解迁移和结晶沉淀的有利媒介,其与富锂伟晶岩等过铝质花岗伟晶岩的形成演化关系密切。本论文提出,碱金属碳酸盐是被忽视的重要助溶剂组分,其在钨锡和锂等稀有金属成矿过程中可能发挥了至关重要的作用。
曾祥晨[4](2021)在《个旧矿区高松矿田成矿期构造应力场数值模拟与找矿预测》文中指出个旧矿区高松矿田大地构造位置位于华夏地块西部右江盆地中南盘江凹断褶束的西南隅,是中国华南成矿省的最西端,毗邻三江成矿带,为特提斯构造域与环太平洋构造域的复合作用下的产物,区内矿床受构造、岩浆岩复合作用控制明显。本论文通过对矿田内的节理构造、断裂构造进行系统划分,结合个旧矿区高松矿田已有勘查成果,分析矿田内构造应力场演化特征,对矿田构造体系进行划分,建立了构造变形的时间序列,分别对成矿前、成矿期和成矿后的构造应力场使用ANSYS有限元数值模拟软件进行模拟,将数值模拟结果与矿区内有利控矿条件结合,对区内有利找矿区域进行预测。通过研究取得以下主要成果:(1)研究区内断层构造发育且多数断层具有多期次活动的特点,将研究区内断层按不同的构造特征分为南北向、北东向、北西向和东西向四组。研究区内发育的节理优势走向集中在NE向(30°~70°)、NW向(290°~330°)、EW向(80°~100°)及SN向(340°~20°)之间。结合所测主要节理构造和断层构造期次划分,认为高松矿田自中生代以来所受主应力方向经历四次转换过程,按演化过程将其划分为近SN向(2°~16°)→NW-SE向(310°~325°)→NE-SW向(43°~53°)→近EW向(72°~96°)。(2)整理个旧高松矿田的区域地质背景、区域成矿过程和条件,总结个旧高松矿田成矿动力学过程,建立了研究区地质模型,运用有限元分析软件ANSYS编写了个旧矿区高松矿田的成矿动力学数值模拟过程,得到各期最大主应力、剪应力和应变强度云图,结合构造应力场数值模拟结果分析了各期构造活动特点。(3)通过分析成矿期数值模拟结果和已探明矿体关系,解析构造应力场对矿体的控制作用,提取个旧矿区高松矿田的有利成矿条件。认为剪应力集中、应变能衰减迅速的区域是有利的找矿部位,并对高松矿田的隐伏矿体进行预测,圈定三处具备找矿潜力的区域。
张静俊[5](2021)在《大兴安岭南段安乐锡多金属矿床成因研究》文中进行了进一步梳理锡矿化与花岗岩的研究已有历史,尤其对华南地区花岗岩与锡等金属矿化的关系研究甚为深入。位于中亚造山带东段兴蒙造山带的大兴安岭南段,是我国北方重要的锡多金属成矿带,成矿潜力巨大,同时也是研究花岗岩与锡等金属元素成因关系的典型区域。位于大兴安岭南段的黄冈-甘珠尔庙成矿带南部的安乐矿床是一个中型规模的热液脉型锡多金属矿床。已知矿体赋存于上二叠统林西组砂岩板岩破碎带中,其成矿地质体为花岗斑岩,成矿元素为一套高中温元素组合,但其成因机制认识不明确。本文在对安乐矿床成矿地质特征研究基础上,开展了锆石、锡石LA-ICP-MS U-Pb定年,岩石地球化学,硫化物原位S-Pb同位素、微量元素研究,以探讨安乐锡多金属矿床的成岩成矿时代、岩石成因、成矿机制以及地球动力学背景,为建立安乐锡多金属矿床成岩成矿模式提供证据,为该区找矿突破提供典型矿床基本数据和成矿理论支撑。本次获得的主要成果及认识如下:1.安乐矿床是一个与岩浆活动有关的中高温热液锡多金属矿床,其成矿过程划分为3个主要阶段:石英-绿泥石-锡石-毒砂阶段(Ⅰ阶段)、石英-绿泥石-锡石-黄铜矿-毒砂-黄铁矿阶段(Ⅱ阶段)、石英-绿泥石-方铅矿-闪锌矿-银矿物阶段(Ⅲ阶段)。2.安乐花岗斑岩具有较高SiO2含量(75.76%~76.67%)、FeOT/(FeOT+MgO)值(0.9~1.0)、104×Ga/Al值(3.36~4.61)、MgO(0.06%~0.07%)、TiO2(0.05%~0.06%)及P2O5含量(0.01%);稀土元素总量较低,具四分组效应和明显负δEu异常的特点;微量元素富集Rb、U、Ta、Nd、Hf等元素,亏损Ba、K、Sr、P、Ti等元素。以上这些特征均说明,花岗斑岩具备高分异A型花岗岩的特点。花岗斑岩中锆石的Ce4+/Ce3+值(5.09~84.34),计算获得的锆石饱和温度为808.69~815.52℃。综合分析表明安乐花岗斑岩具有高演化和低氧化程度特征,对Sn成矿极其有利。3.硫化物原位LA-ICP-MS S同位素δ34Sv-CDT值在-4.56~-3.11‰,原位Pb同位素206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值分别介于18.230~18.348、15.520~15.661和38.022~38.497之间,S-Pb同位素组成说明成矿物质主要来源于岩浆热液。硫化物原位LA-ICP-MS微量元素显示黄铁矿中Co/Ni>1,说明黄铁矿为热液成因。安乐锡多金属矿床黄铜矿明显富集In,Zn,Ag,Sn,亏损Co,Ni,Ga,Ge,As,Cd,Sb,Bi,Pb等微量元素。安乐锡多金属矿床中黄铜矿高Sn含量1397×10-6,具有较低的Cd/Zn比值(0.0029~0.0071),反映了成矿流体为相对还原和高温的岩浆热液流体。4.矿体中锡石LA-ICP-MS U-Pb测年结果为146.8±2.2Ma,表明安乐锡多金属矿床的成矿时代为晚侏罗世;安乐岩体花岗斑岩的锆石LA-ICP-MS U-Pb定年结果为144.0±2.6Ma,与成矿年龄在误差范围内基本一致。这表明,安乐矿床的成岩时代为晚侏罗世,与大兴安岭南段锡多金属矿集区内的典型矿床成岩成矿时代一致。5.安乐锡多金属矿床硫铅同位素组成与大兴安岭南段成矿物质为岩浆来源的金属矿床特征相似,与早白垩世高分异、低氧逸度花岗斑岩密切相关,是深部岩浆流体逐步演化的产物。结合矿区与成矿关系密切的燕山晚期花岗斑岩,本次研究认为安乐锡多金属矿床是受早白垩世古太平洋板块俯冲后撤,软流圈上涌所导致的岩石圈伸展构造背景形成的酸性侵入-次火山岩和断裂控制的。
向路[6](2020)在《江南造山带西缘新元古代锡铌钽成矿作用》文中研究指明高演化的花岗岩多与锡钨铌钽的成矿密切相关。一个岩体成矿与否,具体形成什么类型的矿床,受控于复杂的岩浆、热液过程,包括部分熔融过程中金属的活化,分离结晶过程中金属的富集,流体熔体分离过程中金属的重置以及水岩反应过程中金属的沉淀。而在不同岩体中主导成矿的因素通常并不一致,这使得成矿过程复杂多变。华南地区以多时代(元古代、古生代、早中生代、晚中生代)的花岗岩和钨锡铌钽矿床闻名于世,占据了世界上超过50%的W和20%的Sn的储量,同时提供了可观的铌钽资源。但被晚中生代成矿作用的光芒所掩盖,前燕山期的成矿作用缺少关注,关于不同时代成矿作用之间的联系研究的比较少,对于多时代、多旋回成矿的控制因素仍然不是特别清楚。江南造山带西缘是华南最古老的锡成矿区。一些重要的科学问题,例如花岗岩铌钽成矿潜力、锡多金属矿床的成矿时代、成矿过程以及金属和流体的来源等,缺乏系统性的研究或者存在较大的争议。本文在综合前人资料和成果的基础上,利用薄片鉴定、扫描电镜和电子探针分析、矿石矿物(锡石、铌铁矿、钨铌铁矿、黑钨矿)及副矿物(锆石、榍石)U-Pb同位素和微量元素分析、全岩主微量元素及Sr-Nd-Pb-Li-B同位素分析、电气石Li-B同位素分析等手段,对江南造山带西缘含锡钨铌钽花岗岩及相关的锡多金属(钨、铜等)矿床进行了详细的研究,并进一步探讨华南多时代锡钨铌钽成矿作用的控制因素、在岩浆-热液转变过程中金属的分离以及Li-B同位素的分馏等问题。通过本次研究,取得了以下认识:1.成岩成矿年龄:锆石、钨铌铁矿、铌铁矿的U-Pb年龄指示江南造山带西缘的新元古代含锡花岗岩的侵位发生在~819–832 Ma之间。取自云英岩型、电气石石英脉型、锡石硫化物脉型矿石的锡石、黑钨矿U-Pb年龄指示江南造山带西缘锡多金属成矿作用发生在~823–831 Ma之间,表明岩浆侵位和热液成矿近乎同时。来自甲龙锡矿锡石硫化物脉型矿石的榍石U-Pb年龄指示~420Ma的区域变质作用叠加改造了这些花岗岩和锡矿,使得部分矿物(如钨铌铁矿)发生重结晶,Pb丢失。另外,在四堡群地层中发现的碎屑沉积的电气石,可能来自华南更老的(>~850Ma)基底岩石。B同位素证据(δ11B=–13.1至+15.4‰)指示这些电气石有多个物源(老的花岗岩、变泥质岩以及海相的或者与海水发生过广泛物质交换的铁镁质岩石)。但没有证据指示该地区存在多期次成矿作用。2.金属和流体来源:与锡成矿相关的岩浆、热液电气石普遍富集Sn、Zn、Li、F等花岗岩特征元素组合,围岩中的电气石和花岗岩内部的电气石具有近乎一致的δ11B值(~–12至–9‰),进一步指示锡成矿流体是来自花岗岩。来自九毛锡矿三种矿石(云英岩型、分别赋存于四堡群和超基性岩中的锡石硫化物矿石)的锡石和榍石的主、微量元素成分表明Sn、W、Nb、Ta、U、Zn等金属来自于富F、B的元宝山岩浆热液体系,而与超基性岩无关。考虑到以下证据:(a)赋存在超基性岩中矿石的锡石更富集Cr、V等元素;(b)锡石与斜方砷镍矿、红锑镍矿等富Ni的矿物伴生;(c)锡石硫化物矿石中出现富Cr的尼日尼亚石;(4)九毛等锡多金属矿床的Cu矿体主要分布在超基性岩周围。我们认为在锡多金属成矿作用中超基性岩可能贡献了Cr、Ni、V、Cu等金属。3.花岗岩成矿潜力及控制因素:新元古代铌铁矿和钨铌铁矿的结晶表明江南造山带西缘的新元古代过铝质花岗岩是高分异花岗岩,熔体高度富集锡、铌等成矿元素,有良好的锡铌钽成矿潜力。在未来的新元古代锡铌钽找矿工作中可能需要关注隐伏的高分异岩体。江南造山带西段成矿的花岗岩相对于东段贫瘠的花岗岩,普遍具有更高含量的挥发分(例如B、H2O)。挥发分的加入促进了更广泛的部分熔融和分离结晶过程,最终造成新元古代花岗岩在西段形成一系列锡矿而在东段成矿作用不明显。华南地区从元古代到中生代经历了多期次的构造叠加,这种大陆边缘的沉积物的循环利用,可能在一定程度上促进了成矿元素在花岗岩源区的富集。4.岩浆热液转变过程:电气石淡色花岗岩稀土配分曲线具有明显的四分组效应,云母、锆石和铌钽矿族矿物发育次生结构,表明在岩浆晚阶段有强烈的流体活动。锡、钨、铌和钽在流体和熔体分离过程中会产生多种流体,成矿元素也会在流体与熔体之间重新分配,例如在元宝山地区分离成富Nb-Ta的熔体、早阶段富W-Nb的流体和晚阶段富Sn的流体。另外在岩浆热液转变过程中,Li同位素体系由多种硅酸盐矿物控制,而B同位素体系主要由副矿物相的电气石控制。这种差异性的控制导致岩浆和热液演化过程中Li和B同位素体系的解耦。来自元宝山地区的岩浆、热液电气石的δ11B变化范围很小(–12.5至–9.3‰),反映的是岩浆源区变质沉积岩的特征。相比之下,岩浆和热液电气石的δ7Li表现出三个明显的变化趋势,分别对应分离结晶、岩浆热液转变和水岩反应过程。5.水岩反应及成矿过程:赋存在四堡群片岩和超基性岩中的锡矿石成矿氧逸度在~NNO附近,硅酸盐阶段和硫化物阶段成矿温度分别在~570–350°C和~350–170°C。不同围岩中矿石形成的温度、氧逸度等条件相近,矿石品位(四堡群中矿石Sn品位<1.4%,而超基性岩中矿石Sn品位可达29%)和矿物组合(四堡群中矿石富铁,而超基性岩中矿石富镁)的差异可能是受各自不同的水岩反应过程控制的。电气石的化学成分、Li-B同位素组成也表明,在水岩反应过程中,围岩和成矿流体发生了广泛的物质交换(HREE、Mg、Li、B、Sn)。这个过程可能促进了锡在晚阶段流体中的富集。
张红雨[7](2020)在《内蒙古维拉斯托高中温Sn-Rb-Li-W与中低温Cu-Zn-Ag成矿系统研究》文中进行了进一步梳理本论文主要围绕“大型-超大型锡多金属成矿系统”这一重要科学问题,重点选择了内蒙古地区新发现的维拉斯托锡和铜多金属矿床为研究对象。其矿化特征以深部的蚀变斑岩型、岩体上部的热液角砾岩型、岩体内部及近端云英岩脉型和岩体稍远端的热液脉型矿化为主要特征。由斑岩体至外围依次为Rb-Li-(Sn)、Sn-(W-Cu-Zn)、Cu-Zn-Ag成矿,蚀变组合分别为钠长石-钾长石-白云母、白云母-石英-伊利石、石英-方解石-白云母-伊利石-绿帘石-萤石。将成矿划分为3个阶段,分别为高中温热液蚀变Rb-Li-Sn矿化阶段(I阶段)、高中温锡多金属云英岩阶段(II阶段)和中低温铜多金属阶段(III阶段)。维拉斯托矿区锡和铜多金属矿化与石英斑岩具有密切的关系,该岩体具有高硅高钠、过铝质、高钾钙碱性的岩石地球化学特征,属于高分异I型花岗岩。SrNd-Hf同位素显示其母岩浆来源于新生下地壳的重熔。斑岩的锆石LA-ICP-MS U-Pb年代学结果为135.7±0.9 Ma,认为石英斑岩岩浆形成于陆内伸展背景,与古太平洋板块俯冲过程板片回撤和软流圈上涌有关。维拉斯托不同成矿阶段矿物的硫同位素组成与岩浆硫的范围一致;铅同位素组成显示成矿物质主要与中生代的花岗岩密切相关;氢氧同位素组成也表明流体来源于岩浆热液。石英斑岩斑晶和早阶段蚀变斑岩中发现了典型的熔体-流体包裹体,记录了体系早阶段由熔体向流体的转变过程。流体包裹体研究结果显示早阶段热液蚀变Rb-Li矿化的温度为313383℃,锡多金属成矿阶段的流体温度为260323℃,铜多金属成矿阶段的温度为203240℃。成矿流体由Rb-Li矿化到锡多金属再到铜多金属矿化过程,热液体系的温度逐渐降低。提出热液体系的冷却过程有利于促使锡和铜等金属络合物分解,进而诱发这些金属成矿。维拉斯托矿床的锡多金属成矿阶段锡石的U-Pb定年结果为136.8±3.8141.4±5.9 Ma,该阶段辉钼矿的Re-Os同位素模式年龄为134.2±1.4140.7±1.5 Ma。与锡石和辉钼矿共生的白云母Ar-Ar年龄为133.7±1.5140.7±1.0Ma。铜多金属阶段白云母的Ar-Ar年龄为133.4±0.5133.42±0.5 Ma。多种年代学方法(U-Pb、Re-Os、Ar-Ar)结果表明,维拉斯托岩浆-热液体系成矿作用持续发生的时间大于7 Ma。该较长的矿化-蚀变周期可能与多期岩浆热液成矿事件有密切的关系。基于本次系统的研究工作提出维拉斯托矿区的锡多金属和近端的铜多金属矿化属于一个典型的与早白垩世酸性岩浆作用密切关联的岩浆-热液成矿系统,该成矿系统发育和保存较为完整。与锡-铷-锂等多金属成矿有关成矿系统的确认为该区进一步铜和银多金属找矿与勘查提供了新的思路。
蒋少涌,赵葵东,姜海,苏慧敏,熊索菲,熊伊曲,徐耀明,章伟,朱律运[8](2020)在《中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展》文中认为当前西方各国纷纷制定关键矿产保障供应安全战略,钨锡作为重要的战略性关键矿产,是我国传统的优势矿产资源,但近年来找矿形势不容乐观.本文通过收集整理我国钨锡矿床己有数据和文献资料,对我国钨锡矿床的时空分布及地质成矿规律进行系统归纳总结,指出燕山期是我国钨锡成矿最重要的时期,我国原生钨锡矿床有5种主要类型:斑岩型(W+Sn)、云英岩型(W+Sn)、矽卡岩型(W+Sn)、石英脉型(W为主)和锡石硫化物型(Sn); 3种次要类型:蚀变花岗岩型(Sn+W)、热液角砾岩型(W)和低温热液脉型(W).钨锡成岩成矿过程中,壳幔相互作用十分重要;复式岩体与钨锡矿床的产出关系也十分密切;含钨锡花岗岩的高度分异演化对成矿至关重要.岩浆热液演化过程中温度降低、流体不混溶作用及流体沸腾、多端元-多组分-多来源流体混合和水岩反应是钨锡矿石沉淀的重要机制.
王勇[9](2020)在《西藏班公湖-怒江成矿带西段角西钨矿床成矿作用及找矿预测》文中研究说明角西钨矿床位于班公湖-怒江成矿带西段,是该成矿带西段发现的首例中新世石英脉型钨矿床。缘何独立的钨矿床会在以斑岩-夕卡岩型铜金矿为优势矿种的成矿带上产出?成矿带上是否具有寻找同类型矿床的潜力?针对以上科学问题,本文在野外地质调查和钻孔编录工作基础上,开展光薄片鉴定、锆石U-Pb定年、锆石Lu-Hf同位素、全岩主微量、单矿物He-Ar-S-Pb-H-O同位素分析和流体包裹体研究,以解剖矿床地质特征,揭示成矿作用过程,评价区域成矿潜力,进行找矿预测。本文主要取得以下几点认识:1)角西钨矿床矿石矿物主要为呈宽板状发育的自形黑钨矿(含少量它形白钨矿)。矿体主要呈高角度石英脉发育在砂质板岩和深部岩体之中,走向近南北向,具有典型的“五层楼”分带模式。矿床发育云英岩化、硅化和角岩化等蚀变,成矿阶段可以划分为氧化物阶段、硫化物阶段和萤石-碳酸盐阶段。云母40Ar-39Ar同位素定年结果显示矿床的成矿年龄为13.6~13.1 Ma。2)矿区内发育黑云母二长花岗岩、黑云母二长花岗斑岩、花岗斑岩和白云母花岗岩,其中白云母花岗岩为成矿岩体。锆石U-Pb定年结果显示以上花岗岩的结晶年龄为14.5~13.7 Ma。全岩地球化学、锆石Hf和黑钨矿稀有气体He-Ar同位素分析结果显示矿床主要形成于俯冲至拉萨地体下部的印度岩石圈板片发生回撤或断离的构造背景之下,幔源岩浆的注入、中拉萨地体下部古老的结晶基底和狮泉河蛇绿混杂岩带分别为矿床的形成提供了热源、物质来源和岩浆通道,是矿床形成的重要条件。3)流体包裹体及H-O同位素研究显示成矿流体具有高温(340~380℃)、低盐度(<7.5wt.%)特征,氧化物阶段成矿流体中W元素含量为1.2~70ppm,明显高于硫化物和萤石-碳酸阶段。矿床形成压力为0.7~1.9kbar,对应的形成深度为2.5~6.9km。成矿流体在向上运移过程中与大气降水发生混合并与岩体反应,导致流体Cl-浓度和温度降低、pH值升高是钨沉淀成矿的主要机制。4)综合主要控矿因素与找矿标志,论文建立了角西钨矿床“三位一体”地质找矿预测模型。在此基础上,结合激电测深、区域化探、遥感解译和品位分析等成果对矿床深部及矿区外围进行了找矿预测。
代作文[10](2020)在《西藏错那洞铍锡钨多金属矿床成矿作用研究》文中研究表明北喜马拉雅成矿带长期以来被认为属于中低温Pb-Zn-Ag-Au-Sb成矿带,对于带上稀有金属成矿的问题有人关注和思考,但一直没有找矿上的进展。2016年,中国地质调查局成都地质调查中心基于多年的勘查和研究工作,在藏南扎西康矿集区中部的错那洞穹隆构造中发现了错那洞Be-Sn-W多金属矿床。该矿床是特提斯喜马拉雅Pb-Zn-Ag-Au-Sb成矿带上发现的首个具有超大型成矿潜力的铍多金属矿床。因此,该矿床的发现打开了喜马拉雅成矿带寻找稀有金属矿床的窗口。然而,目前对该矿床还未开展系统的研究工作。本文通过详细的野外地质调查和室内综合研究,以岩相学、放射性同位素年代学、稳定同位素地球化学、全岩和单矿物主、微量元素地球化学、流体包裹体显微测温等为主要研究手段,对错那洞Be-Sn-W多金属矿床开展了成矿作用研究,并建立了成矿模型。本文取得的主要成果和认识如下:(1)错那洞穹隆中共发育三期淡色花岗岩,独居石U-Th-Pb测年结果结合文献中年代学数据,表明其分别形成于34~20Ma(变形二云母花岗岩)、20~18Ma(含石榴石二云母花岗岩)和16~15Ma(含石榴石白云母花岗岩)。在同位素组成上,花岗岩全岩Sr-Nd同位素组成与高喜马拉雅变质泥岩相似,岩浆电气石B同位素组成与陆壳相似;岩石地球化学上,岩石具有较高的Si O2、Al2O3和较低的Mg O、Mn O、Fe2O3T含量,铝饱和指数(A/CNK)≥1.1,富集大离子亲石元素,亏损高场强元素,样品Rb/Sr比值和Ba含量呈负相关性;此外,岩石中存在大量富铝质矿物(如白云母、石榴石、电气石等),表明错那洞淡色花岗岩是高喜马拉雅结晶基底的变质泥岩通过白云母脱水熔融形成的S型过铝质花岗岩。错那洞淡色花岗岩具有显着的Eu、Sr、Ti负异常和稀土元素四分组效应,从弱定向二云母花岗岩→含石榴石二云母花岗岩→含石榴石白云母花岗岩,Eu、Sr、Ti负异常和稀土元素四分组效应均增强,而暗色矿物和Ba、Sr等元素含量显着降低,结合定量分离结晶模拟计算,表明错那洞淡色花岗岩在形成过程中普遍经历了长石、黑云母、含Ti矿物等矿物的分离结晶作用,并且逐渐增强。错那洞淡色花岗岩具有较高的Be、Sn、W含量,并且随着岩浆演化程度的增高而形成富Be-Sn-W花岗岩,此外岩石还具有富B、F和还原性的特征,表明错那洞淡色花岗岩具有稀有金属成矿潜力,且分异程度越高成矿潜力越大。(2)详细的野外地质调查表明,错那洞Be-Sn-W多金属矿床完全受错那洞穹隆构造控制,并与穹隆中新生代淡色花岗岩具有密切的空间关系。该矿床共包括云英岩型Sn、伟晶岩型Be、矽卡岩型Be-W-Sn和热液脉型Be-Sn-W四种矿化类型。锡石U-Pb和云母40Ar-39Ar同位素测年结果表明错那洞穹隆中主要发生过两期Be-Sn-W多金属成矿作用:18~17Ma的云英岩型Sn矿化和15~14Ma的伟晶岩型Be、矽卡岩型Be-W-Sn和热液脉型Be-Sn-W矿化,分别与含石榴石二云母花岗岩(20~18Ma)和含石榴石白云母花岗岩(16~15Ma)形成年龄接近。矿石矿物和脉石矿物C-H-O同位素、白钨矿原位微量元素以及白钨矿和萤石Sr-Nd同位素组成表明,错那洞两期成矿作用主成矿阶段的成矿流体均为岩浆流体。金属硫化物具有与错那洞淡色花岗岩一致的S同位素组成,暗示岩体是成矿物质的主要来源。以上数据表明,错那洞Be-Sn-W多金属矿床中早、晚两期成矿作用分别与含石榴石二云母花岗和含石榴石白云母花岗岩具有成因上的联系。流体包裹体显微测温结果表明:云英岩型Sn矿化是含矿流体沸腾作用的结果;伟晶岩型Be矿化与岩浆演化晚期相分离相关;矽卡岩型Be-W-Sn矿化受含矿热液与穹隆幔部大理岩之间剧烈的水-岩反应支配;热液脉型Be-Sn-W矿化是成矿流体温度降低和建造水的加入共同作用的结果。
二、锡石在热液过程中的运移形式(1984)(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、锡石在热液过程中的运移形式(1984)(论文提纲范文)
(1)论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系(论文提纲范文)
0 引言 |
1 个旧-建水三叠纪弧后裂谷盆地系统 |
1.1 个旧-建水三叠纪弧后裂谷盆地系统与构造演化 |
1.2 个旧三叠纪弧后裂谷盆地内火山喷流沉积-叠加改造成矿系统 |
1.3 滇东南印支期山弧盆耦合转换格局与区域成矿 |
2 燕山期岩浆侵入序列与垂向构造岩相学分带 |
2.1 个旧东区岩浆侵入构造系统的垂向分带 |
2.2 似层状碎裂岩化相含锡石白云岩(VTZ3)与似层状白云岩型锡矿床 |
2.3 个旧组内断褶式碳酸盐岩层(VTZ4)与脉带状锡银多金属矿床 |
2.4 碎裂岩化电气石热液岩溶大理岩相带(VTZ5)与电气石细网脉带型锡矿床 |
2.5 热液角砾岩相带和电气石热液隐爆角砾岩相带(VTZ6)与三稀金属矿 |
2.6 矽卡岩化相-矽卡岩相带(VTZ7)与矽卡岩型锡铜多金属矿床 |
2.7 浅色花岗岩相(VTZ8)和岩浆热液成矿系统根部相(VTZ8)与蚀变花岗岩型锡矿床 |
3 表生岩溶构造系统与表生成矿 |
3.1 高原侵蚀面(VTZ1) |
3.2 高原侵蚀面与锡铅锌-锰表生成矿系列 |
3.3 浅部新生代隐伏岩溶构造系统(VTZ2) |
3.4 锡铅层间氧化矿的储矿构造样式与成因归属 |
4 结论 |
(2)川西甲基卡伟晶岩型锂矿床岩浆—热液演化与成矿的矿物学示踪(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 选题依据及研究意义 |
1.2 研究现状 |
1.3 研究内容与技术路线 |
1.4 项目依托及完成实物工作量 |
1.5 创新性成果 |
第二章 区域及矿田地质概况 |
2.1 区域地质背景 |
2.2 矿田地质概况 |
第三章 分析测试方法 |
3.1 电子探针分析方法 |
3.2 矿物化学计算方法 |
第四章 134 号(IV类型)伟晶岩脉的岩浆-热液演化 |
4.1 结构分带及岩相学 |
4.2 矿物学特征 |
4.3 134 号脉岩浆-热液演化过程及熔-流体性质 |
4.4 134 号脉内部分带的形成及成岩成矿 |
4.5 小结 |
第五章 308 号(II-III-IV类型)伟晶岩脉的岩浆-热液演化 |
5.1 结构分带及岩相学 |
5.2 矿物学特征 |
5.3 矿物化学对熔体和流体性质的限制 |
5.4 甲基卡308 号伟晶岩脉岩浆-热液演化及成矿 |
5.5 小结 |
第六章 甲基卡其他伟晶岩脉的岩浆-热液演化 |
6.1 668 号脉 |
6.2 528 号脉 |
6.3 104 号脉 |
6.4 33和34 号脉 |
6.5 小结 |
第七章 结论 |
致谢 |
参考文献 |
个人简历 |
(3)过铝质花岗岩类矿床中碳酸盐/CO2对稀有金属成矿的作用(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 选题依据及研究意义 |
1.3 技术路线 |
1.4 关键技术说明 |
1.5 完成工作量 |
第二章 过铝质花岗岩类稀有金属矿床中碳酸盐/CO_2的富集特征 |
2.1 石英脉型黑钨矿矿床 |
2.2 稀有金属花岗伟晶岩 |
2.3 本章小结 |
第三章 黑钨矿在含碱金属碳酸盐热液中的溶解和结晶行为 |
3.1 实验方法 |
3.2 实验结果 |
3.3 分析讨论 |
3.4 碳酸盐/CO_2对石英脉型钨矿床成矿作用的贡献 |
3.5 本章小结 |
第四章 锡石在含碱金属碳酸盐热液中的溶解和结晶行为 |
4.1 实验方法 |
4.2 实验结果 |
4.3 分析讨论 |
4.4 对锡矿化伟晶岩成矿作用的指示 |
4.5 本章小结 |
第五章 碳酸盐对稀有金属花岗伟晶岩形成演化的制约作用 |
5.1 实验方法 |
5.2 实验结果 |
5.3 分析讨论 |
5.4 本章小结 |
第六章 对稀有金属成矿作用的指示 |
结论 |
致谢 |
参考文献 |
个人简历 |
(4)个旧矿区高松矿田成矿期构造应力场数值模拟与找矿预测(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 论文选题依据及研究意义 |
1.2 国内外研究现状 |
1.2.1 个旧高松矿田地质工作研究现状 |
1.2.2 构造应力场研究现状 |
1.2.3 数值模拟研究现状 |
1.3 研究思路及内容 |
1.4 完成工作量 |
第二章 区域成矿地质背景 |
2.1 区域大地构造背景 |
2.2 区域地层 |
2.2.1 新生界 |
2.2.2 中生界 |
2.2.3 古生界 |
2.2.4 元古界 |
2.3 区域构造 |
2.3.1 北西向构造 |
2.3.2 北东向构造 |
2.3.3 东西向构造 |
2.3.4 南北向构造 |
2.4 区域岩浆岩 |
2.5 区域地球物理物特征 |
2.6 区域地球化学特征 |
2.7 区域矿产 |
第三章 研究区地质特征 |
3.1 研究区地层 |
3.2 研究区构造 |
3.3 研究区岩浆岩 |
3.4 研究区矿床特征 |
第四章 研究区构造演化及控矿构造分析 |
4.1 研究区主要构造解析 |
4.1.1 褶皱构造 |
4.1.2 断裂构造 |
4.1.2.1 北东向断裂 |
4.1.2.2 北西向断裂 |
4.1.2.3 东西向断裂 |
4.1.2.4 南北向断裂 |
4.1.3 层间破碎带 |
4.1.4 节理构造 |
4.1.4.1 构造点节理发育特征及力学分析 |
4.1.4.2 构造点共轭节理发育特征及力学分析 |
4.1.4.3 节理组合及分期配套 |
4.2 研究区古构造应力场恢复 |
4.3 研究区控矿构造分层解析 |
第五章 构造应力场数值模拟 |
5.1 有限单元法简介 |
5.2 有限单元法基本思路及步骤 |
5.3 有限元计算软件ANSYS简介 |
5.4 构造应力场数值模拟的基本原理及步骤 |
5.5 个旧高松矿田构造应力场数值模拟 |
5.5.1 地质模型构建 |
5.5.2 力学模型构建 |
5.6 模拟结果分析与讨论 |
5.6.1 印支晚期-燕山早期构造应力场模拟结果分析 |
5.6.2 燕山中晚期构造应力场模拟结果分析 |
5.6.3 喜山早期构造应力场模拟结果分析 |
5.6.4 喜山晚期构造应力场模拟结果分析 |
第六章 成矿预测 |
6.1 矿床形成的主控因素 |
6.1.1 区域构造演化对成矿的控制 |
6.1.2 地层岩性对成矿的控制 |
6.1.3 构造对成矿的控制 |
6.1.4 岩浆岩体对成矿的控制 |
6.2 找矿标志 |
6.3 找矿远景区预测 |
第七章 结论与存在问题 |
7.1 结论 |
7.2 存在问题 |
致谢 |
参考文献 |
附录 A |
附表 B |
(5)大兴安岭南段安乐锡多金属矿床成因研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景、研究意义和研究现状 |
1.1.1 选题背景和研究意义 |
1.1.2 锡多金属矿床研究现状 |
1.1.3 研究区地质概况、工作程度及存在问题 |
1.2 研究内容、研究方法 |
1.2.1 研究内容 |
1.2.2 研究方法 |
1.2.3 论文完成情况及工作量 |
第二章 区域地质特征 |
2.1 区域地质背景 |
2.1.1 区域地层 |
2.1.2 区域构造 |
2.1.3 区域岩浆岩 |
2.2 区域矿产特征 |
2.2.1 矿产分布特征 |
2.2.2 成矿系列 |
2.2.3 锡多金属矿床类型 |
第三章 矿床地质特征 |
3.1 矿区地质特征 |
3.1.1 矿区地层 |
3.1.2 矿区构造 |
3.1.3 矿区岩浆岩 |
3.2 矿体特征 |
3.3 矿石特征 |
3.3.1 矿石类型及矿物组成 |
3.3.2 矿石结构、构造 |
3.4 围岩蚀变特征 |
3.5 成矿期和成矿阶段 |
第四章 岩石年代学和地球化学研究 |
4.1 岩相学特征 |
4.1.1 转山子岩体 |
4.1.2 磨盘山岩体 |
4.1.3 安乐岩株 |
4.2 锆石LA-ICP-MS U-Pb定年及微量元素 |
4.2.1 转山子岩体 |
4.2.2 磨盘山岩体 |
4.2.3 安乐岩株 |
4.3 全岩主量、稀土和微量元素分析 |
4.3.1 转山子岩体 |
4.3.2 磨盘山岩体 |
4.3.3 安乐岩株 |
4.4 岩石成因和构造背景 |
4.4.1 转山子岩体 |
4.4.2 磨盘山岩体 |
4.4.3 安乐岩株 |
第五章 矿床地球化学特征 |
5.1 锡石LA-MC-ICP-MS U-Pb定年 |
5.1.1 样品特征及分析方法 |
5.1.2 分析结果 |
5.2 硫化物原位LA-ICP-MS S-Pb同位素 |
5.2.1 样品特征及分析方法 |
5.2.2 分析结果 |
5.3 硫化物原位LA-ICP-MS微量元素 |
5.3.1 样品特征及分析方法 |
5.3.2 分析结果 |
第六章 讨论 |
6.1 成岩时代与成岩成矿关系 |
6.2 成矿物质来源 |
6.2.1 S的来源 |
6.2.2 Pb的来源 |
6.3 硫化物微量元素特征对锡多金属矿成矿过程的指示 |
6.4 矿床成因 |
第七章 结论 |
致谢 |
参考文献 |
附录A(攻读学位其间发表论文目录) |
(6)江南造山带西缘新元古代锡铌钽成矿作用(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景和选题依据 |
1.1.1 花岗岩锡钨铌钽成矿的控制因素 |
1.1.2 华南的幕式成矿作用的研究进展 |
1.2 科学问题和技术路线 |
1.3 完成工作量 |
第二章 地质背景 |
2.1 区域地质背景 |
2.2 含锡(钨铌钽)花岗岩 |
2.2.1 梵净山花岗岩 |
2.2.2 元宝山花岗岩 |
2.3 锡多金属矿床 |
2.3.1 甲龙铜锡矿 |
2.3.2 九毛锡铜矿 |
2.3.3 标水岩锡钨矿 |
第三章 样品采集处理与测试方法描述 |
3.1 样品采集与处理 |
3.2 全岩主微量元素分析 |
3.3 扫描电镜和电子探针分析 |
3.4 矿物原位U-Pb同位素及微量元素分析(LA-ICP-MS) |
3.5 原位电气石B同位素分析(SIMS) |
3.6 全岩和电气石样品Li-B同位素分析(MC-ICP-MS) |
3.7 全岩Sr-Nd-Pb同位素分析(TIMS) |
3.8 钨铌铁矿U-Pb同位素分析(TIMS) |
第四章 成岩成矿年代学格架 |
4.1 引言 |
4.2 样品描述 |
4.3 分析结果 |
4.3.1 LA-ICP-MS锆石U-Pb年龄 |
4.3.2 LA-ICP-MS锡石U-Pb年龄 |
4.3.3 LA-ICP-MS榍石U-Pb年龄 |
4.3.4 LA-ICP-MS铌铁矿、钨铌铁矿和黑钨矿U-Pb年龄 |
4.3.5 TIMS钨铌铁矿U-Pb年龄 |
4.4 讨论 |
4.4.1 LA-ICP-MS和TIMS U-Pb年龄的比较 |
4.4.3 华南新元古代锡多金属成矿作用的时空分布 |
4.5 小结 |
第五章 锡矿的金属来源和成矿过程 |
5.1 引言 |
5.2 分析结果 |
5.2.1 围岩和矿石的岩相学特征 |
5.2.2 矿物成分 |
5.3 讨论 |
5.3.1 流体和金属的来源 |
5.3.2 锡的热液运移 |
5.3.3 锡矿床的形成 |
5.4 小结 |
第六章 电气石淡色花岗岩的矿物学和地球化学特征 |
6.1 引言 |
6.2 分析结果 |
6.2.1 岩相学及地球化学特征 |
6.2.2 矿物学特征 |
6.2.3 全岩Sr-Nd-Pb同位素成分 |
6.3 讨论 |
6.3.1 成矿元素在岩浆热液转变过程中的再分配 |
6.3.2 华南幕式的锡钨铌钽成矿作用:物源的控制? |
6.3.3 与其他成矿或贫矿花岗岩的对比 |
6.4 小结 |
第七章 Li、B同位素对岩浆热液演化及成矿过程的示踪 |
7.1 引言 |
7.2 电气石的产状 |
7.3 分析结果 |
7.3.1 全岩主微量元素成分 |
7.3.2 电气石主量元素成分 |
7.3.3 电气石微量元素成分 |
7.3.4 电气石和全岩的Li-B同位素组成(MC-ICP-MS) |
7.3.5 电气石B同位素组成(SIMS) |
7.4 讨论 |
7.4.1 岩浆和热液电气石成分对锡成矿过程的记录 |
7.4.2 Li和B的源区 |
7.4.3 在岩浆分异和岩浆热液转变过程中Li的行为 |
7.4.4 Li和B同位素体系的解耦 |
7.5 小结 |
第八章 结论及展望 |
参考文献 |
附表 |
作者及科研成果简介 |
致谢 |
(7)内蒙古维拉斯托高中温Sn-Rb-Li-W与中低温Cu-Zn-Ag成矿系统研究(论文提纲范文)
中文摘要 |
Abstract |
1 引言 |
1.1 选题背景及研究意义 |
1.1.1 关键金属与发展战略 |
1.1.2 中亚造山带东段多金属成矿研究 |
1.2 研究现状及存在问题 |
1.2.1 高中温Sn多金属与中低温Cu-Pb-Zn-Ag多金属成矿关系研究现状 |
1.2.2 我国主要Sn矿床研究现状 |
1.2.3 中亚造山带东段岩浆热液矿床研究现状 |
1.2.4 维拉斯托多金属矿床研究现状 |
1.3 研究内容与研究思路 |
1.3.1 主要研究内容 |
1.3.2 主要研究思路 |
1.3.3 拟解决的科学问题 |
1.4 技术路线 |
1.5 主要工作量 |
1.6 论文研究创新点和主要成果 |
2 中亚造山带东段区域地质 |
2.1 区域岩浆岩与构造演化 |
2.2 区域地层 |
2.3 区域岩浆热液成矿作用 |
2.4 区域Sn多金属成矿作用 |
3 维拉斯托Sn-Rb-Li-Cu-Zn-Ag多金属矿床 |
3.1 矿区地质特征 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.2 矿体产出特征 |
3.3 矿石物质组成 |
3.4 围岩蚀变特征 |
3.5 成矿阶段划分 |
4 岩浆岩年代学、地球化学与岩石成因 |
4.1 样品采集与分析方法 |
4.2 全岩主量元素 |
4.3 全岩微量元素 |
4.4 全岩Sr-Nd同位素 |
4.5 锆石原位Lu-Hf同位素 |
4.6 锆石U-Pb年代学 |
4.7 岩浆岩成因 |
5 成矿作用年代学厘定 |
5.1 样品采集与分析方法 |
5.2 锡石U-Pb年代学 |
5.3 辉钼矿Re-Os年代学 |
5.4 白云母Ar-Ar年代学 |
6 成矿物质来源与流体演化 |
6.1 样品采集与分析方法 |
6.2 原位S同位素组成 |
6.3 原位Pb同位素组成 |
6.4 流体包裹体研究 |
6.5 D-O同位素组成 |
7 维拉斯托高中温Sn-Rb-Li与中低温Cu-Zn-Ag成矿系统 |
7.1 成矿母岩浆起源与构造背景 |
7.2 成岩-成矿时代关系与成矿作用事件 |
7.3 成矿物质来源与流体演化 |
7.4 维拉斯托高中温锡多金属与中低温铜多金属成矿系统特征 |
8 结论 |
致谢 |
参考文献 |
附录 |
(8)中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展(论文提纲范文)
1 中国钨锡矿床时空分布规律 |
1.1 成矿区带 |
1.2 成矿时代 |
2 中国钨锡矿床地质特征 |
2.1 矿床类型与主要矿化特征 |
2.2 含矿岩体特征 |
3 中国钨锡矿床成矿机制 |
3.1 成矿物质来源 |
3.1.1 壳幔相互作用对钨锡成矿物质的贡献 |
3.1.2 岩浆和围岩地层对成矿物质的贡献 |
3.2 成矿流体来源 |
3.3 成矿物理化学条件 |
3.3.1 温度和盐度 |
3.3.2 流体体系及流体成分 |
3.3.3 氧逸度 |
3.3.4 矿质沉淀机制 |
3.4 复式岩体多期成矿 |
3.5 与钨锡共生的其他稀有金属矿化 |
4 结论 |
补充材料 |
(9)西藏班公湖-怒江成矿带西段角西钨矿床成矿作用及找矿预测(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 选题依据及意义 |
1.2 研究现状和拟解决问题 |
1.2.1 研究现状 |
1.2.2 存在问题 |
1.3 研究内容和技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.4 完成主要工作量 |
1.5 主要成果及创新点 |
1.5.1 取得的主要成果 |
1.5.2 创新点 |
2 区域地质背景 |
2.1 区域地层 |
2.2 区域构造 |
2.3 区域岩浆岩 |
2.4 区域矿产 |
3 矿床地质特征 |
3.1 地层 |
3.2 构造 |
3.3 岩浆岩 |
3.4 矿体特征 |
3.5 围岩蚀变特征 |
3.6 矿石特征 |
3.6.1 矿石类型及矿物组成 |
3.6.2 矿石组构 |
3.6.3 矿石矿物成分 |
3.7 成矿期次与成矿阶段 |
4 花岗岩年代学及岩石地球化学 |
4.2 成岩时代 |
4.2.1 样品制备及测试 |
4.2.2 分析结果 |
4.2.3 小结 |
4.3 岩石地球化学特征 |
4.3.1 主量元素 |
4.3.2 微量元素 |
4.3.3 小结 |
4.4 Hf-Sr-Nd-Pb同位素地球化学特征 |
4.4.1 锆石Lu-Hf同位素 |
4.4.2 全岩Sr-Nd-Pb同位素 |
4.5 岩石成因 |
4.5.1 岩石类型 |
4.5.2 岩浆源区 |
4.5.3 构造背景 |
5 成矿流体特征 |
5.1 样品采集及分析 |
5.2 流体包裹体显微温度学 |
5.2.1 流体包裹体岩相学 |
5.2.2 流体包裹体盐度、均一温度特征 |
5.3 成矿流体成分特征 |
5.3.1 激光拉曼分析结果 |
5.3.2 包裹体原位LA-ICP-MS分析结果 |
6 成矿作用 |
6.1 成矿时代 |
6.2 成矿物质来源 |
6.2.1 样品采集及分析方法 |
6.2.2 He-Ar同位素特征 |
6.2.3 S同位素特征 |
6.2.4 Pb同位素特征 |
6.3 成矿流体来源 |
6.3.1 样品采集及分析方法 |
6.3.2 H-O同位素特征 |
6.3.3 成矿流体来源讨论 |
6.4 成矿压力深度估算 |
6.5 成矿作用过程 |
6.5.1 岩浆演化与成矿 |
6.5.2 黑钨矿沉淀机制 |
6.5.3 硫化物沉淀机制与流体演化 |
7 成矿控制条件及找矿预测 |
7.1 区域地球化学特征 |
7.1.1 水系沉积物元素背景分布特征 |
7.1.2 水系沉积物元素组合特征 |
7.1.3 元素地球化学分布特征 |
7.2 遥感解译 |
7.2.1 异常解译结果 |
7.2.2 遥感异常特征 |
7.3 控矿条件分析 |
7.3.1 岩浆岩条件 |
7.3.2 地层条件 |
7.3.3 构造条件 |
7.4 找矿标志 |
7.4.1 地表露头 |
7.4.2 围岩蚀变 |
7.4.3 化探标志 |
7.4.4 找矿地质模型 |
7.5 找矿预测 |
7.5.1 深部云英岩型钨矿体 |
7.5.2 角东伟晶岩型Nb-Ta稀有金属矿 |
7.5.3 荣啊约钨矿 |
8 结论 |
8.1 成果认识 |
8.2 存在问题及建议 |
致谢 |
参考文献 |
附表 |
个人简历 |
(10)西藏错那洞铍锡钨多金属矿床成矿作用研究(论文提纲范文)
摘要 |
Abstract |
第1章 前言 |
1.1 选题背景及项目依托 |
1.2 研究现状 |
1.2.1 铍稀有金属研究现状 |
1.2.2 喜马拉雅淡色花岗岩研究现状 |
1.2.3 错那洞穹隆研究现状 |
1.2.4 错那洞稀有金属矿床研究现状 |
1.3 存在问题 |
1.4 研究目的与研究内容 |
1.5 研究方法与技术路线 |
1.6 完成实物工作量 |
1.7 本文取得的主要进展(创新点) |
第2章 区域地质背景 |
2.1 大地构造位置及构造格架 |
2.2 区域地层 |
2.3 区域构造 |
2.3.1 东西向断裂 |
2.3.2 南北向断裂 |
2.3.3 藏南拆离系 |
2.3.4 北喜马拉雅片麻岩穹隆 |
2.4 区域岩浆岩 |
2.4.1 新元古代岩浆岩 |
2.4.2 古生代岩浆岩 |
2.4.3 中生代岩浆岩 |
2.4.4 新生代岩浆岩 |
2.5 区域变质岩 |
2.6 区域矿产 |
第3章 扎西康矿集区地质特征 |
3.1 地层 |
3.1.1 古生界 |
3.1.2 三叠系 |
3.1.3 侏罗系 |
3.1.4 第四系 |
3.2 构造 |
3.3 岩浆岩 |
3.3.1 早白垩世双峰式岩浆岩 |
3.3.2 新生代岩浆岩 |
3.4 变质岩 |
3.4.1 区域变质作用 |
3.4.2 动力变质作用 |
3.4.3 接触变质作用 |
3.5 矿产 |
第4章 错那洞矿床地质特征 |
4.1 穹隆构造 |
4.1.1 下部单元(核部) |
4.1.2 中部单元(滑脱系或幔部) |
4.1.3 上部单元(边部或盖层) |
4.1.4 穹隆中侵入岩 |
4.2 矿体空间分布 |
4.2.1 昌明Be-W矿段 |
4.2.2 祥林Be-Sn-W矿段 |
4.2.3 董杰Be-W矿段 |
4.2.4 日纳Be-W矿段 |
4.3 矿体和矿石特征 |
4.3.1 矽卡岩型Be-W-Sn矿体 |
4.3.2 热液脉型Be-Sn-W矿体 |
4.3.3 伟晶岩型Be矿体 |
4.3.4 云英岩型Sn矿体 |
4.4 围岩蚀变 |
4.5 成矿期次 |
第5章 错那洞淡色花岗岩成岩过程 |
5.1 独居石U-Th-Pb年代学 |
5.1.1 分析方法 |
5.1.2 分析结果 |
5.2 全岩主量元素 |
5.2.1 分析方法 |
5.2.2 分析结果 |
5.3 全岩微量元素 |
5.3.1 分析方法 |
5.3.2 分析结果 |
5.4 全岩Sr-Nd同位素 |
5.4.1 分析方法 |
5.4.2 分析结果 |
5.5 电气石化学成分和B同位素 |
5.5.1 分析方法 |
5.5.2 分析结果 |
第6章 错那洞铍锡钨多金属矿床成矿年代学 |
6.1 锡石U-Pb同位素年代学 |
6.1.1 分析方法 |
6.1.2 分析结果 |
6.2 云母~(40)Ar-~(39)Ar同位素年代学 |
6.2.1 分析方法 |
6.2.2 分析结果 |
第7章 成矿流体与成矿物质来源 |
7.1 包裹岩相学特征 |
7.2 流体包裹体显微测温 |
7.2.1 分析方法 |
7.2.2 分析结果 |
7.3 流体包裹体激光拉曼(LRM)分析 |
7.3.1 分析方法 |
7.3.2 分析结果 |
7.4 H-O同位素 |
7.4.1 分析方法 |
7.4.2 分析结果 |
7.5 C-O同位素 |
7.5.1 分析方法 |
7.5.2 分析结果 |
7.6 白钨矿LA-ICP-MS原位微量元素 |
7.6.1 分析方法 |
7.6.2 分析结果 |
7.7 白钨矿、萤石Sr-Nd同位素 |
7.7.1 分析方法 |
7.7.2 分析结果 |
7.8 硫同位素 |
7.8.1 分析方法 |
7.8.2 分析结果 |
第8章 成矿作用与成矿模型 |
8.1 错那洞淡色花岗岩成因与成矿潜力 |
8.1.1 成岩时代 |
8.1.2 源区特征 |
8.1.3 岩石成因 |
8.1.4 错那洞淡色花岗岩稀有金属成矿潜力 |
8.2 错那洞矿床成矿作用与成矿模型 |
8.2.1 成矿时代 |
8.2.2 成矿流体特征 |
8.2.3 成矿流体来源及演化 |
8.2.4 成矿物质来源 |
8.2.5 成矿机理 |
8.2.6 成矿模型 |
8.3 喜马拉雅Be-Sn-W-Pb-Zn-Ag-Sb-Au成矿潜力与找矿分析 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
附录 |
四、锡石在热液过程中的运移形式(1984)(论文参考文献)
- [1]论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 方维萱,郭玉乾,贾润幸,童祥,马振飞. 地质力学学报, 2021
- [2]川西甲基卡伟晶岩型锂矿床岩浆—热液演化与成矿的矿物学示踪[D]. 王臻. 中国地质科学院, 2021
- [3]过铝质花岗岩类矿床中碳酸盐/CO2对稀有金属成矿的作用[D]. 刘永超. 中国地质科学院, 2021(01)
- [4]个旧矿区高松矿田成矿期构造应力场数值模拟与找矿预测[D]. 曾祥晨. 昆明理工大学, 2021(01)
- [5]大兴安岭南段安乐锡多金属矿床成因研究[D]. 张静俊. 昆明理工大学, 2021(01)
- [6]江南造山带西缘新元古代锡铌钽成矿作用[D]. 向路. 南京大学, 2020(12)
- [7]内蒙古维拉斯托高中温Sn-Rb-Li-W与中低温Cu-Zn-Ag成矿系统研究[D]. 张红雨. 中国地质大学(北京), 2020(04)
- [8]中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 蒋少涌,赵葵东,姜海,苏慧敏,熊索菲,熊伊曲,徐耀明,章伟,朱律运. 科学通报, 2020(33)
- [9]西藏班公湖-怒江成矿带西段角西钨矿床成矿作用及找矿预测[D]. 王勇. 中国地质大学(北京), 2020
- [10]西藏错那洞铍锡钨多金属矿床成矿作用研究[D]. 代作文. 成都理工大学, 2020