一、热力学在矿床中的应用(下)(论文文献综述)
胡新露,姚书振,何谋惷,俎波,曾丽平,丁振举[1](2021)在《富碲化物金矿床中碲的成矿作用研究进展》文中认为碲(Te)属于稀散元素,是我国的战略性关键矿产资源之一,富碲化物金矿床是碲元素的重要载体.将富碲化物金矿床划分为3种成因类型,分别为造山型金矿床、浅成中-低温热液型金矿床以及与碱性岩浆岩有关的金矿床.富碲化物金矿床可以形成于岛弧、大陆边缘、弧后盆地、绿岩带等多种构造环境,常受区域性断裂构造控制,其围岩专属性不强,矿床中存在大量碲化物,与自然金和硫化物伴生产出.成矿作用常可划分为3个阶段:石英-黄铁矿阶段、石英-多金属硫化物-碲化物阶段、石英-碳酸盐阶段,其中金和碲主要在第二阶段发生沉淀富集.成矿流体一般为中-低温、中-低盐度,呈弱酸性-中性,具有较高的fTe2.富碲化物金矿床中的碲主要来源于地幔、岩浆热液和赋矿围岩.碲在流体中可以呈碲氯络合物、碲硫络合物、碲氢络合物等形式迁移,也可呈气态迁移.引起碲发生沉淀的因素主要为温度或/和压力的变化、水岩反应、流体混合、流体不混溶(沸腾)、含碲气体的冷凝以及多因素的叠加.在碲的成矿作用研究中,应重视碲化物结构和成分的微区原位分析、碲同位素分析以及热力学分析.
范宏瑞,蓝廷广,李兴辉,M.SANTOSH,杨奎锋,胡芳芳,冯凯,胡换龙,彭红卫,张永文[2](2021)在《胶东金成矿系统的末端效应》文中进行了进一步梳理胶东是中国最大的金矿集中区,金成矿作用具有瞬时性,是在同一成矿构造背景和同一流体成矿系统下完成的.胶东金矿床中控制金沉淀的两个重要机制,硫化和流体不混溶作用,均消耗成矿流体中的硫. H2S从主成矿流体中逃逸,总硫浓度降低,不仅可导致金的高效沉淀,还能引起还原性矿物磁黄铁矿和氧化性矿物磁铁矿等矿物的沉淀.脉石矿物石英的溶解度受温度、压力和CO2含量的影响,在低温时受压力影响小、在高温时受压力影响大,在低压时受温度影响小、在高压时受温度影响大.可以根据建立的石英溶解度模型,解释成矿脉体中石英溶解-再沉淀行为和不同类型石英脉的形成机制.也正是多期成矿流体活动,造成胶东金矿脉石英具有复杂的环带或溶蚀结构.胶东金矿主成矿期内的黄铁矿在单颗粒尺度显示出复杂的显微结构特征,微量元素(主要为富As环带与金的耦合)和硫同位素组成同样有一定规律性变化.富As流体可能是由于初始成矿流体流经富As的变沉积岩地层所导致,黄铁矿边部As-Au振荡环带的产生则与断层活动导致的压力波动和流体发生局部相分离有关.胶东金矿床中存在金成色的时空演化,水/岩反应(硫化作用)是早期金矿化的成矿机制,形成相对高成色金,而后期在浅部显着降压及伴随的流体相分离是晚期金矿化的成矿机制,形成低成色金.克拉通破坏背景下,新生下地壳发生角闪岩相-麻粒岩相的变质脱水,形成富含Au和CO2的成矿流体.流体沿深大断裂及其次生构造上升,形成大规模断裂控制的金矿床.
张晓亮[3](2021)在《微波作用下载金硫化物中单质硫的释放及其浸金机制研究》文中进行了进一步梳理目前,黄金的提取仍以氰化法为主,但氰化物的剧毒性给黄金生产企业带来了巨大的环保压力。碱性含硫试剂被认为是一类最具希望替代氰化物的环保型浸金药剂,它可通过将单质硫溶于碱性溶液来制备。针对传统氰化浸金工艺环境污染严重的问题,本文提出了利用载金硫化物微波热分解过程中生成的单质硫来实现非氰自浸金的新思路。考察了载金硫化物释放单质硫的热力学条件和黄铁矿原位加热过程中物相转变的基本规律,深入研究了微波作用下载金硫化物热分解过程中单质硫的释放规律与生成机理,探讨了微波辐射对黄铁矿热分解过程中硫元素转化的促进作用机理;利用耗散型石英晶体微天平原位研究了热分解生成的单质硫在碱性溶液中浸金的作用机制,完善了金精矿微波热分解-自浸出的基础理论体系。主要研究结论如下:载金硫化物热分解过程中生成的单质硫主要来源于黄铁矿。在氮气气氛下,黄铁矿原位加热过程中的相变温度区间为500~600℃,提高温度对黄铁矿中S-S键伸缩振动的影响更为显着。随着温度的升高,黄铁矿晶格发生线性热膨胀,平均体膨胀系数为5.64×10-3 K-1,热分解生成的磁黄铁矿沿着z轴方向的热膨胀明显更快。高硫金精矿的微波吸收性能随着温度的不断升高先增强后减弱,在频率为2.45 GHz的室温下物料复介电常数的虚部值为9.99,当温度达到700℃时,虚部值增大为原来的4.76倍,继续升温至900℃时,虚部值反而减小为27.76,但仍然高于500℃时复介电常数的虚部值11.40。在微波辐射温度为450℃时,黄铁矿热分解产物中已经有磁黄铁矿产生,温度达到900℃时的硫元素转化率为46%。黄铁矿微波热分解过程中生成了不同晶体结构的磁黄铁矿相,矿物晶体由等轴晶系逐渐转变为六方晶系;硫元素化学形态首先从黄铁矿中的S22-向Sn2-转化,随着温度的升高Sn2-将进一步转化为S2-,该过程中Sn2-的出现表明样品中存在S0。在微波辐射作用下,高硫金精矿中的黄铁矿热分解后颗粒内部产生大量空洞和孔道结构,生成了纳米级磁黄铁矿多晶聚合体,晶体结构的对称性降低;在700℃下保温30 min后,物料孔隙率从32.9%增大到48.9%,总孔面积增大为原来的2.16倍,这使得原本被硫化矿物包裹的金裸露出来,增加了金与浸出试剂的接触机会。通过对比研究发现,微波辐射加热降低了黄铁矿热分解过程中的物相转变温度,促进了黄铁矿热分解过程中硫的形态转化,使黄铁矿热分解反应活化能降低了 27.14 kJ·mol-1,提高了单质硫的生成量。黄铁矿在热分解过程中Fe-S键更容易发生断裂,但在高温下S-S键也会出现断裂,[FeS6]八面体随着温度的升高逐渐解体,释放出气态的单质硫。外加电场使黄铁矿晶格中原子电子云发生微小位移,削弱了原子间的相互作用力,而且外加磁场对黄铁矿热分解的化学反应也具有促进作用。利用载金硫化物微波热分解过程中生成的单质硫在碱性溶液中浸出其自身热分解产物中的金,浸出率可以达到90%以上。借助耗散型石英晶体微天平原位研究了单质硫在碱性溶液中浸金的作用机制,发现微波热分解过程中生成的单质硫与升华硫在碱性溶液中的浸金性能几乎相同,金的溶出速率分别为0.59ng·cm-2·s-1和0.68 ng·cm-2·s-1;铜氨络离子可以消除含硫浸金试剂在金表面的吸附过程,从而显着提高金的溶出速率。单质硫在碱性溶液中溶解后形成的含硫组分在金表面发生粘弹性吸附,浓度越高吸附层的柔性越强,金表面钝化越严重,在金与浸出溶液界面发生含硫试剂的浸金反应生成了Au-S配合物并溶出。
肖庆玲[4](2021)在《安徽宣城茶亭铜金矿床成矿作用研究》文中指出长江中下游成矿带是我国东部十分重要的铁、铜、金多金属成矿带,广泛发育斑岩-矽卡岩型矿床和玢岩型矿床。基于对带内典型矿床的详细研究,许多学者提出长江中下游成矿带斑岩型矿床为陆内背景下岩浆热液活动的结果。然而,对于长江中下游成矿带斑岩成矿系统的认识还存在很多疑惑和争议,如构造背景,成矿岩浆岩起源及演化过程,热液流体的出溶及矿质沉淀机制等,因此,需要对区内斑岩矿床进行深入细致的剖析,为该成矿带矿床成因提供更多可靠的依据。宣城矿集区位于长江中下游成矿带南陵-宣城一带,其西面和北面分别紧邻铜陵矿集区和宁芜矿集区,南面逐渐过渡到江南隆起带地区。随着近几年深部找矿勘探工作的开展,在宣城矿集区发现了包括茶亭铜金矿床在内的多个Cu、Fe、Au、Pb、Zn等多金属矿床/矿点,目前,该区已经成为长江中下游成矿带一个新的重要矿集区。茶亭矿床是成矿带中最大型的斑岩型铜金矿床,同时也是长江中下游成矿带为数不多的大型斑岩铜金矿床。勘探表明,虽然矿床围岩为三叠系碳酸盐,但矽卡岩型矿化并不强烈,以斑岩型矿化为主,明显不同于成矿带中其他斑岩-矽卡岩矿床,成矿过程明显有别于成矿带其他矿床。同时,矿区发育多种类型岩浆岩和角砾岩,他们与成矿的关系不清。这些问题的解决不但可以深化对长江中下游成矿带斑岩-矽卡岩型矿床成矿系统演化的认识,同时对该矿集区下一步的矿床勘查方向具有重要的影响。本文以茶亭铜金矿床为研究对象,通过详细的野外地质观察,同时借助各种分析手段,如全岩主、微量元素,Sr-Nd同位素,矿物主、微量元素,流体包裹体,矿物原位O-S-Hf同位素测试等技术方法,对茶亭矿床的地质特征、成矿岩浆岩起源与演化、成矿流体演化和矿床成因等展开了全面而精细的剖析,获得了以下认识:茶亭矿床发育多期次岩浆岩,分别为成矿前的角闪闪长玢岩,成矿期的石英闪长玢岩以及成矿后的闪长玢岩、煌斑岩和安山玢岩。岩浆岩的锆石U-Pb年龄分析结果表明,角闪闪长玢岩、石英闪长玢岩和安山玢岩分别形成于138.8±3.0 Ma、137.6±3.0 Ma和135.5±3.6 Ma,与茶亭矿床的辉钼矿Re-Os模式年龄值(平均值136.0±1.3 Ma)在误差范围内一致,均为长江中下游成矿带燕山期早阶段岩浆活动的产物。角闪闪长玢岩和石英闪长玢岩具有相似的全岩主、微量及Sr-Nd-Hf同位素组成,均表现为富集大离子亲石元素,亏损高场强元素,但是具有较低的Yb/Lu和Y/Yb比值。结合岩石中较低的锆石εHf(t)(-8.29 to-12.02),全岩εNd(t)(-6.93to-9.01)以及较高的(87Sr/86Sr)i(0.705723 to 0.70686),推测茶亭岩体的不同类型岩浆岩来自同一壳幔混源的岩浆源区。全岩地球化学、同位素以及不同岩浆岩中角闪石、斜长石、黑云母及磁铁矿等的矿物学和地球化学特征表明,在陆内拉张背景下,富集地幔起源的幔源岩浆和下地壳起源的壳源岩浆在壳幔边界发生了MASH过程形成了茶亭矿床的岩浆源区,岩浆上升至地壳大约5.2-8.6 km左右,形成了浅部岩浆房;岩浆房中基性岩浆的注入促成了成矿前角闪闪长玢岩的形成,并伴随少量的流体出溶;混合后的岩浆房残余岩浆又经历了斜长石、黑云母和角闪石的分离结晶以及围岩的同化混染,最终在地壳1.9-3.4km处形成了氧逸度更高、更加富集硫和金属的成矿期石英闪长玢岩,同时伴随大量的成矿流体出溶。茶亭矿床发育典型的斑岩型蚀变和矿化,主要发生在石英闪长玢岩内部。从早到晚分别为矽卡岩化、钾硅酸盐化和绢英岩化。由于围岩为碳酸盐,青磐岩化在茶亭矿床中仅少量发育,而矽卡岩化在矿床中分布十分广泛。矿化主要呈稀疏浸染状、脉状和角砾状产于钾化和绢英岩化的石英闪长玢岩中。在矿床900-350m处,发育大量赋矿的热液角砾岩,根据胶结物和角砾的组成,可以分为MH型(以石英为主胶结)、H1型(硬石膏为主胶结的)和H2型(以绿泥石为主胶结)三种类型。其中,MH型角砾岩位于钾化蚀变顶部,发育高温蚀变矿物,如钾长石和磁铁矿,推测为岩浆-热液隐爆作用形成,为典型的岩浆-热液角砾岩;热液流体的水力破碎作用在浅部形成了广泛的H1型角砾岩;而成矿后闪长玢岩的形成加热较冷的大气降水形成了H2型角砾岩。MH和H1型角砾岩是矿化的重要载体。茶亭矿床的热液成矿从早到晚可分为硅酸盐阶段、绢英岩化和石英碳酸盐三个成矿阶段。硅酸盐阶段以发育矽卡岩化和钾硅酸盐化为主,绢英岩化阶段是主要的成矿阶段,发育绢英岩化,石英碳酸盐阶段为成矿后阶段,以发育碳酸化为主。不同阶段硬石膏的O和S同位素、热液黑云母及磁铁矿的地球化学特征均表明,早阶段成矿流体主要为岩浆热液,但是随着流体的演化,大气降水加入的比重越来越大。流体包裹体测温及矿物地球化学显示,随着流体的演化,温度、盐度和氧逸度逐渐降低。温度、盐度和氧逸度的降低、流体沸腾作用以及大气降水的混合可能共同控制了茶亭矿床金属矿物的沉淀。茶亭矿床发育大量贫矿矽卡岩。通过矽卡岩地质特征及石榴子石、硬石膏等矽卡岩矿物地球化学和O-S同位素研究,本文认为以下几点因素最终导致贫矿矽卡岩的形成:(1)矽卡岩形成时流体的高氧逸度阻碍了硫化物的沉淀;(2)来自浅部岩浆房的流体被厚重的大理岩圈闭于石英闪长玢岩中,形成不了足够规模的接触带矽卡岩;(3)内矽卡岩的规模很小,石榴子石化作用不能产生足够的为后期流体运移和沉淀的通道和空间;外矽卡岩的矿物组合(硬石膏和钙铁榴石)表明其在取代灰岩的过程中并不能释放大量的开放空间,流体更倾向于在斑岩体内部的裂隙活动。尽管如此,大量矽卡岩矿物如钙铁榴石和硬石膏的沉淀,能有效降低流体的氧逸度,有利于后期硫化物的沉淀。综上,本文认为茶亭矿床为一斑岩型铜金矿床,但相比于一般的斑岩矿床其成矿流体氧逸度更高且更加富硫。基于对茶亭矿床和宣城矿集区内围岩地层、控矿构造和成矿岩浆岩等方面的成矿条件分析,本文提出以下三点找矿方向:(1)在区内石炭系碳酸盐地层和岩体接触带寻找矽卡岩型矿床;(2)关注区域内岩浆-热液角砾岩发育的地区,追索可能出现的斑岩型矿床;(3)在茶亭矿床附近的隐伏中酸性侵入体,寻找可能成群出现的斑岩型矿床。
钟宏,宋谢炎,黄智龙,蓝廷广,柏中杰,陈伟,朱经经[5](2021)在《近十年来中国矿床地球化学研究进展简述》文中研究说明我国的矿床地球化学研究在近十年取得了众多重要进展。本文对中国岩浆型Cu-Ni-(PGE)硫化物和Fe-Ti-V矿床、斑岩型铜矿床、花岗岩型钨锡矿床、碳酸岩型稀土矿床、卡林型金矿床和密西西比河谷型(MVT)铅锌矿床等的一些相关研究进展,以及原位分析技术和实验地球化学在矿床研究方面的应用进展进行了扼要论述。近十年来,造山带铜镍硫化物矿床的寻找取得突破进展,岩浆通道系统被证实对巨量钒钛磁铁矿的堆积起关键作用;碰撞型斑岩铜矿的成矿模型更趋完善,花岗岩相关钨锡矿床的成矿过程与机制获得更精细刻画,碳酸岩型稀土矿床的形成时限被精确限定;华南大规模低温成矿的时限和动力学背景研究取得重大突破,成矿物质来源和流体演化的认识更为深入;原位微区元素-同位素组成对精细刻画成矿过程发挥重要作用,实验地球化学的应用初现端倪。此外,本文还对未来需要重视的几个方面的工作提出了初步建议。
尹业长[6](2020)在《胶西北金矿集区金成矿作用与成矿模型》文中研究表明胶西北金矿集区位于华北克拉通东南缘、苏鲁超高压变质带北段西侧和郯庐断裂带东侧,是一个主要由前寒武纪基底岩系和超高压变质岩块组成,中生代构造、岩浆活动频繁且剧烈的内生热液金矿集区。它是我国最大的金矿集区,区内产出三个超千吨的世界级金矿田(三山岛金矿田、焦家金矿田和玲珑金矿田),包含超大型、大型金矿床十余处,中、小型金矿床近百处。前人的研究表明,胶西北金矿集区内绝大多数金矿床的成矿时代都在120±10 Ma以内。如此大规模、短时期、高强度的金矿化是在怎样的成矿作用下形成的,一直是学者们努力探寻的关键性问题之一。本文在区域地质背景、区域地球物理和区域地球化学资料研究的基础上,以胶西北金矿集区典型金矿床为研究对象,综合运用多种地质、地球化学方法探讨了金矿集区的成矿物质来源、成矿过程及成矿作用,从而建立胶西北金矿集区成矿模型。胶西北金矿集区的金成矿作用与中生代构造岩浆活动联系紧密。区域地球物理资料解译成果显示金矿床的主要围岩为玲珑序列花岗岩和郭家岭序列花岗闪长岩;区域地球化学特征参数表明,玲珑超单元和郭家岭超单元的金元素浓集系数明显高于其他地质单元,指示出它们是有利的成矿地质单元;结合区域地质背景研究,认为玲珑序列花岗岩和郭家岭序列花岗闪长岩与金成矿密切相关,玲珑序列花岗岩的形成过程为金矿化提供了热源,郭家岭序列花岗闪长岩是直接矿源岩系,并且对金矿的富集和定位起主导作用。为了进一步探索胶西北金矿集区成矿物质来源和成矿作用过程,选取并采集新立、焦家和大尹格庄金矿岩(矿)石及岩心样品,利用地质学、地球化学方法进行实验分析与成果解释。金矿物微区分析表明金矿物颗粒的暗化主要是由Al、Si、O、Fe和S组成的杂质或包裹体引起的;碲(铋)金络合物在金的迁移成矿过程中起着重要作用。岩石地球化学分析结果显示,玲珑序列花岗岩属于高钾钙碱性I-S过渡型花岗岩,由来自上地幔或上地幔与下地壳间的花岗岩浆重熔胶东岩群变质岩所形成的交代再生岩浆和同熔型岩浆结晶分异而形成;3个金矿床的微量元素含量差异较大;稀土元素研究显示,各个金矿床不同岩石类型的岩心样品都具有相似的配分型式,都具有轻稀土富集、重稀土亏损的特征,故推测它们具有同源性-胶西北金矿集区的金矿床具有同一成矿来源;此外,尝试使用对应分析方法研究不同金矿床多种元素之间的相互关系,取得良好的分类效果,体现出了各种元素的特性以及各矿床之间的关系。围岩蚀变研究显示了不同蚀变过程中元素的带入带出情况,并分析了元素富集与亏损的原因,例如Zr和Hf的丢失可能和锆石的分解有关。流体包裹体研究显示,胶西北金矿集区流体包裹体具有中-低盐度,低密度的特点,主成矿温度为219.7387.7℃,成矿压力为32160Mpa。氢氧同位素研究结果显示,成矿流体由岩浆水和大气降水混合而成,硫同位素和铅同位素指示成矿流体具有壳幔混合源特征。在上述研究的基础上,从成矿物质来源、容矿构造、成矿时代以及成矿地质作用四个方面总结胶西北金矿集区金矿床的成矿机理,构建出成矿模型:在中生代早白垩世华北东部岩石圈减薄的构造背景下,地幔隆起引发拆沉作用形成一个大规模的壳幔岩浆混合带,地壳深部的金矿源层在这里发生部分熔融产生含金花岗质岩浆,构造应力体制由挤压到伸展的转换进一步产生大规模、高强度的岩浆活动事件,含金花岗质岩浆在结晶分异过程中分离出含金热液,这些热液沿着断裂构造裂隙向上迁移,在一定的构造部位和物理化学条件下通过充填和交代的方式形成胶西北金矿集区内众多金矿床。
张培[7](2020)在《云南白秧坪铅锌多金属矿床热力学形成条件与矿床成因分析》文中研究指明兰坪盆地位于三江地区南部,西部边界为澜沧江缝合带、东部边界为金沙江缝合带,由南向北渐灭,整体呈扇形分布。盆地内部构造带十分发育,为矿体形成提供有利条件,本区内常见铜铅锌多金属矿床大量产出沿构造带产出。目前,学者对这些矿床的成因探究存在争议,兰坪盆地内发育的矿床的特征矿物组合的热力学探究更是少有涉及。于是以此角度对该矿区铜铅锌多金属矿床进行研究,对于兰坪地区金属成矿带,乃至沉积岩容矿型铅锌矿床成矿理论的丰富和完善都具有重要意义。笔者结合并参考了前人对于白秧坪铅锌多金属矿区研究成果,运用各种地质手段,以矿物学和岩石学研究分析法、地球化学研究分析法、矿物组合热力学相图研究法为主要手段,对兰坪地区白秧坪矿床的成矿物理化学条件、成矿物质来源、矿床成因模式进行了进一步研究。本次研究取得的主要成果如下:1、白秧坪铅锌多金属矿床位于兰坪盆地的北部区域,盆地内十分复杂的区域构造演化为矿体的形成提供了十分有利的地质条件。矿区内矿体大多产在盆地内构造带的次级断裂带内。2、硫同位素研究结论表明成矿流体来自深部,具有壳幔混合的特征。3、矿区内可见Ag、Co矿物,分别以辉银矿、辉砷钴矿存在。其中Co成矿与As元素异常相关,其元素规律变化指示成矿温度约为300℃。4、对白秧坪铅锌矿床共生矿物组合的热力学研究,首先确定矿床典型矿物共生组合以及成矿阶段划分,利用黄铁矿、黄铜矿、方铅矿和闪锌矿共生矿物进行热力学平衡的相关计算,选取400 K、500 K、600 K三个温度下矿物共生特征方程绘制了热力学lg[Cu2+]-pH、lg[HS—]-pH和Eh-pH相图,得出规律表明成矿流体中矿物迁移沉淀机制和矿物共生组合的形成与成矿流体的温度、离子活度、pH、Eh的多因素变化息息相关。并以热力学相图为基础,结合矿区构造背景和硫同位素等证据建立本矿床的成矿模式。
胡训宇[8](2020)在《南陵—宣城矿集区成矿过程数值模拟与三维成矿预测》文中研究说明覆盖区找矿是当前地质勘探工作中的难点,也是成矿预测研究的热点。在近年来的找矿勘探工作中,南陵-宣城地区新发现了茶亭大型斑岩型铜金矿床、长山、双井中型矽卡岩型铜铅锌矿床等一系列新的矿产地,同时,在麻姑山矽卡岩型铜钼矿床、荞麦山矽卡岩型铜钨矿床等已有矿床深边部也取得了新的找矿突破,显示出极大的区域成矿潜力,已成为长江中下游成矿带新的多金属矿集区。由于该区为覆盖区,地表露头少,区域内地质工作比较薄弱,找矿工作也面临“难辨识、难发现”的问题,亟需新的找矿勘查理论和技术方法支持。近年来,三维成矿预测理论与方法已在国内外覆盖区找矿工作中广泛应用并取得较好的找矿效果;而成矿过程数值模拟是在矿床学、物理、化学、计算机技术等多学科交叉的基础上,利用有限元或有限差分方法,对成矿过程进行模拟仿真的计算分析方法,可实现成矿作用定量化表达并定量分析矿床规模、矿体形态及品位分布等控制因素及其作用过程、矿床定位空间的控制因素及其作用机理、成矿过程持续时间等传统矿床学的难点问题。成矿过程数值模拟与三维成矿预测的有效结合将可能为矿床学的理论研究及覆盖区找矿勘查提供新的技术手段。在系统收集、整理南陵-宣城矿集区地质资料的基础上,建立了研究区内狸桥-铜山矿田、宣城-麻姑山矿田、茶亭斑岩型矿床、麻姑山矽卡岩型矿床的数值模拟模型;在前人研究基础上,分别建立了基于Flac3D的矿田尺度三维成矿过程数值模拟方法流程以及基于Comsol Multiphysics的矿床尺度成矿过程数值模拟方法流程,结合传统矿床学理论特别是斑岩型与矽卡岩型矿床成矿模式,对南陵-宣城矿集区内的狸桥-铜山矿田、宣城-麻姑山矿田以及茶亭斑岩型铜金矿床、麻姑山矽卡岩型铜钼矿矿进行了多场耦合成矿过程数值模拟及三维成矿预测研究。茶亭斑岩型铜金矿床与麻姑山矽卡岩型铜钼矿床的成矿过程数值模拟研究结果表明,茶亭矿床中黄铜矿以及温度的分布与已知矿体吻合,同时也揭示出矿床深部(-1800米到-2414米)仍然具有成矿潜力。麻姑山矿床的数值模拟结果与南东翼已知矿体吻合,同时,模拟结果显示其北西翼岩枝具有一定的成矿潜力。另外,模拟估算出茶亭斑岩型铜金矿床的成矿过程持续时间约为9600年到75000年之间,在十万年尺度内,这一结果也为矿床学的理论研究提供了新的作证。对狸桥-铜山矿田与宣城-麻姑山矿田的三维成矿过程数值模拟研究显示,区域体应变极大值分布与矽卡岩型矿床的空间分布相关。根据体应变极大值分布,圈定出了矽卡岩型矿床找矿靶区25处,其中狸桥-铜山矿田17处,宣城-麻姑山矿田8处,同时结合区域重力异常和成矿过程数值模拟结果,提出来重点成矿潜力区。总之,本文将成矿过程数值模拟、三维成矿预测方法与传统矿床学理论结合,建立了多场耦合、多尺度成矿过程数值模拟方法流程,开展了矿田、矿床两级尺度以及斑岩型、矽卡岩型两种类型矿床的成矿过程数值模拟与三维成矿预测研究。研究结果一方面为矿床学的理论研究提供了新的作证,另一方面也为南陵-宣城矿集区的找矿勘查提供了新的方向,具有较重要的理论意义和应用价值。
李梦霞[9](2020)在《贵州省晴隆县大厂锑矿成矿模式综合研究》文中提出贵州晴隆大厂锑矿地处滇、黔、桂三省交界处的晴隆县大厂镇,位于扬子陆块与右江造山带的接触带上,主要受北东-南西向构造控制。近年来,前人对研究区的地质勘探工作不断进行,在矿床地质特征、控矿条件、围岩蚀变、矿床地球化学等方面已经有了较为深入的研究,但在矿床成因类型、成矿流体来源方面依旧存在一些争议。通过对贵州省晴隆县大厂锑矿广泛收集资料,结合对大厂锑矿的野外矿山实际地质调查和研究,本论文掌握大厂锑矿的矿体数量、矿体产状、规模等宏观地质特征;对锑矿石开展深入细致的矿石学研究,观察大厂锑矿的岩石、矿石的微观地质特征,掌握矿石及围岩的类型,矿石的矿物组成(脉石矿物、矿石矿物),确定矿石矿物之间的相互关系、矿石结构和构造,厘定矿物形成的先后顺序,划分成矿阶段、成矿期;系统开展矿石的透明矿物中的流体包裹体研究,利用冷热台对包裹体片进行流体包裹体测温实验,包括显微岩相学观察和研究,计算包裹体参数,以帮助确定含矿热液类型、成矿温度、压力、成矿深度等;开展矿石的稳定同位素测试,分析成矿物质来源以及成矿时代,综合分析成矿时期的大地构造环境,成矿流体类型及流体迁移机制、矿物质堆积空间、有用矿物的结晶沉淀机制,为建立大厂锑矿成矿模式提供支持数据。(1)锑矿体呈层状、似层状或透镜状产出,与地层产状基本一致。锑矿石的主要构造有块状构造、脉状及网脉状构造、角砾状构造、晶洞状构造、土状构造、胶状构造、浸染状构造;主要结构有自形结构、半自形结构、半自形-他形结构、他形结构、揉皱结构等。矿区的矿石组成简单,金属矿物主要以辉锑矿为主、其次有黄铁矿、锑华、黄锑石、黄铜矿等:脉石矿物种类多,以石英、萤石、高岭石为主,其次为重晶石、石膏、贵翠(绿色石英)、方解石、雌黄、辰砂、粘土矿物等。(2)通过流体包裹体分析和测试数据,成矿流体主要来源于大气降水,岩浆活动和构造运动加热而演变成含矿热液,温度和盐度降低结晶沉淀成矿。(3)同位素测试结果显示,成矿物质主要来源于深部,在上升过程中有地壳元素混入。成矿时代推定大约为125.2~148Ma,大厂锑矿形成于燕山期。(4)论文认为大厂锑矿受层位、构造、岩性、剥蚀面、古喀斯特地貌等因素的综合控制作用明显。根据上述研究取得结果,论文认为大厂锑矿属于超浅成-浅成低温热液锑矿床。
王振江[10](2020)在《中国金川Ni-Cu(PGE)硫化物矿床深部成矿过程的实验研究》文中研究指明地幔发生部分熔融时,硫化物熔体和硅酸盐熔体的分布和迁移不仅影响了地球各个地球化学圈层之间的物质循环,而且控制了岩石圈地幔中亲铜元素的地球化学行为;同时,在一定程度上为岩浆Ni-Cu-PGE硫化物矿床的形成贡献了所需的成矿物质。本论文利用高温高压实验技术、理论计算和显微层析成像等方法,并结合使用传统矿床学和地球化学手段,以中国金川超大型岩浆Ni-Cu(PGE)硫化物矿床为实例,主要研究了上地幔部分熔融过程中两相不混熔熔体(硫化物熔体和硅酸盐熔体)的分布状态和迁移机制,及其对岩石圈地幔再富集过程的贡献,探索了岩浆硫化物矿床形成的深部地质过程及其微观成矿机制。中国金川Ni-Cu(PGE)硫化物矿床是世界第三大在采Ni矿床,近年来国内外地质学家对金川岩体及其赋存矿体的矿物学、岩石学、地球化学以及成岩成矿机制等方面开展了大量的研究。然而,关于岩浆硫化物矿床仍然存在一些科学问题具有较大争议,本论文主要针对下列两个重要的问题开展相关研究:(1)金属硫化物和硅酸盐熔体在成矿源区中具有怎样的分布状态和迁移机制?(2)金川矿床的硫是否存在地壳来源?在总结前人研究的基础之上,本研究选取金川矿床不同类型的代表性矿石样品,利用Nano SIMS对该矿床主要硫化物的硫同位素开展相关原位微区分析,得到其海绵陨铁状矿石的硫同位素值(δ34S)主要集中在-4.5‰~2.7‰范围内,显示了地幔硫同位素的特征。热液矿石中硫化物的δ34S值具有明显的正偏特点(均值~2.05‰),而热液改造型矿石则显示负偏特点(均值~-3.27‰),两者硫同位素值具有明显的互补特征,说明后期热液作用可能更易携带重硫同位素(34S)迁移。虽然岩浆型矿石的硫同位素可能经历了岩浆均一化作用,遮盖了地壳硫同位素的特征,但是,在金川矿区和周边地区未发现明显的含硫地层,因此,金川矿床的硫可能主要来源于地幔。那么,对于金川矿床这样存在巨量硫化物堆积的地质体,在没有地壳硫加入的情况下,其下岩石圈地幔(成矿源区)经历了怎样的地质过程才能导致硫化物在金川矿床中如此高效率的聚集?为了探索这个问题,本研究使用合成地幔岩/橄榄石、金属硫化物和玄武质熔体等初始物质在0.5-1.5 GPa和600-1300℃条件下分别进行了三个系列的高温高压实验,即静态部分熔融实验、动态实验和分层反应实验,系统地研究了在部分熔融地幔中两相不混熔熔体的分布状态和迁移驱动力。在静态条件下,通过分析实验产物的二维和三维熔体分布特征可知,硅酸盐熔体主要沿着固体矿物颗粒边界分布,而体系中具有各向异性界面能的多相硅酸盐矿物的存在导致硅酸盐熔体形成了被熔体通道断点断开的局部互相连通的熔体网络;根据理论计算可知,熔体通道最窄处的尺寸约为~0.3μm;随着实验温度从1200°C升高到1250°C,硅酸盐熔体分数则从~7.87±0.19 vol%(PC185,含硫化物实验)升高到~9.17±0.13 vol%(PC226,含硫化物实验),而硅酸盐熔体在硅酸盐矿物基质中的二面角则从~19.3-21.3°(95%置信区间)降低至~13.7-15.5°(95%置信区间);同时,在三维熔体网络中,节点配位数N=3和4的累计频率从~23.1±1.4%增加至~26.5±1.5%;这些均表明随实验温度的增加,体系中硅酸盐熔体网络的连通性和渗透性均增加。局部互相连通的硅酸盐熔体网络致使理论计算得到的熔体渗透性(k~10-14-10-16 m2)和迁移速度(v~0.7-11.1μm/day)只能应用于单个完全连通的熔体通道中。在无硅酸盐熔体条件下,金属硫化物熔体(<3.77 vol%)在硅酸盐矿物基质中形成了孤立的熔体囊,且具有大的二面角(~91.5-101.3°,95%置信区间);然而,当硅酸盐熔体出现之后,硫化物熔体形成液滴状熔体球被硅酸盐熔体包裹,产于熔体三联点或者熔体囊中,而且由于受到硅酸盐熔体通道最小维度(~0.3μm)和熔体通道断点的限制,在部分熔融体系中,高表面张力的硫化物熔体通常被困在体系内不能随硅酸盐熔体的孔隙流动而迁移。与之相比,动态变形实验中,在大应变量的剪切应力作用下,硅酸盐熔体和初始“被搁浅”的硫化物熔体均被拉长且相间分布,形成了大量与剪切方向呈小角度夹角(~14.3±4.5°)且对向剪切方向延长的富熔体条带(长度可达几百微米);精细的显微结构分析可以观察到硅酸盐熔体打开了一定方向的硅酸盐矿物颗粒的界面,为硫化物熔体的高效迁移提供了通道;此外,还有少量单独由拉长的硫化物熔体组成的熔体条带,这些条带具有与剪切方向更大的夹角(~29.9±3.6°);这些均表明体系中出现硅酸盐熔体之后,含硫化物的部分熔融岩石对于剪切应力的响应类似于部分熔融的硅酸盐体系,也就是说,硅酸盐熔体的出现控制了这些由两相不混熔熔体组成的富熔体条带。在差异应力驱动下,这些被硅酸盐熔体打开的矿物颗粒界面为硫化物熔体的迁移提供了高孔隙度通道;根据简单体系的两相流动理论可知沿着这些富熔体条带的方向,硫化物熔体具有非常高的迁移速度(>475.2-990.0μm/day),外推至天然条件,一定大小的硫化物液滴(>毫米尺度)可以沿着这些富熔体条带高速迁移,进而使岩石圈地幔富集相应的亲铜元素;因此,差异应力是一种高效的驱动硫化物熔体迁移的驱动力。除了差异应力之外,部分熔融体系内部通常也会受到气体相的浮力以及熔体相与周围固体相反应化学势的驱动,所以分层反应实验的主要目的是探索在部分熔融岩石中,反应渗透不稳定性和气泡浮选对硫化物熔体迁移的贡献。反应渗透不稳定性是指在部分熔体体系中,熔岩反应和熔体流动之间的正反馈能够驱动硅酸盐熔体发生通道化迁移的一种驱动力。当反应时间增加到~72h时,分层反应实验的上部样品中能够观察到更多的树枝状熔体通道(~21个熔体通道,最长长度约~420μm)和硫化物熔体(最大粒径约~10.7μm),且硫化物液滴的分布与硅酸盐熔体通道的产状近似一致;理论计算可知,硅酸盐熔体在熔体通道中的迁移速度(~0.09μm/s)比基质中的孔隙流动速度(~10-4μm/s)高约两个数量级,而下部熔体源区中一定大小(<10.7μm)的硫化物液滴可以在这个高的迁移速度作用下,被硅酸盐熔体携带进入熔体通道中。然而,当恒温时间继续增加到~96h时,上部样品中只能观察到熔体通道闭合之后留下的痕迹,而硫化物的含量基本保持不变。理论计算可知,实验体系具有高的Da值(2.44*104-1.15*105>103)和低的Pe值(0.66-1.63<10),表明相对于熔体迁移速率,体系具有较高的熔岩反应和熔体扩散速率,也就是说,体系的反应渗透不稳定性被抑制,所以只有当下部熔体源区中存在足够量的可与硅酸盐矿物反应的熔体时,体系的反应渗透不稳定性才会被提高,上部样品中的熔体通道就会保持打开,而更多的硫化物熔体也会随着高速迁移的硅酸盐熔体被携带进入熔体通道中。当体系中出现气体相时,低压条件(0.5 GPa),在反应渗透不稳定性驱动下,硅酸盐熔体形成了局部互相连通的熔体通道;而理论分析和实验观察均表明气体相会优先吸附在硫化物熔体球表面,形成了气泡-硫化物集合体(具有大的气泡-硫化物加湿角~99.7-101.4°,90%置信区间);显然,气泡-硫化物集合体的密度低于单独的硫化物液滴,有利于更大的硫化物熔体向上迁移。根据系统的实验研究可知,更长的恒温时间、更高的反应温度和挥发分含量均有助于形成更多的气泡-硫化物集合体,进而促进更多更大的硫化物熔体随硅酸盐熔体向着熔体通道内迁移。所以,反应渗透不稳定性和气泡浮选也是有效的促进硫化物熔体物理迁移的驱动力。由于构造稳定的地质条件下更有利于气泡-硫化物集合体的保存,所以对于产在构造活跃的大陆裂谷背景条件下的金川矿床来说,差异应力和反应渗透不稳定性对成矿物质的迁移和萃取的贡献会大于气体浮选。综上所述,硫化物熔体在差异应力、反应渗透不稳定性和气泡浮选三种驱动力的作用下能够发生高效率的迁移和萃取,有助于亏损岩石圈地幔的再富集,进而使镍和铜等成矿元素在深部成矿源区中发生预富集,为岩浆硫化物矿床的形成提供了物质基础,这可能就是导致金川岩体中巨量硫化物堆积的第一步。本成果为进一步认识和理解岩浆硫化物矿床的成因提供了实验成矿学方面的依据,从而从高温高压成矿实验角度,阐明了该类型矿床的深部成矿过程以及金属矿化富集的机制。
二、热力学在矿床中的应用(下)(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、热力学在矿床中的应用(下)(论文提纲范文)
(1)富碲化物金矿床中碲的成矿作用研究进展(论文提纲范文)
0 引言 |
1 碲的地球化学性质 |
2 富碲化物金矿床的成因类型 |
3 富碲化物金矿床的地质特征 |
4 碲的来源 |
5 碲的迁移形式 |
6 碲的沉淀机制 |
7 碲金共(伴)生成因 |
8 碲的成矿作用研究方向 |
9 结论 |
(2)胶东金成矿系统的末端效应(论文提纲范文)
1 引言 |
2 成矿地质背景与金矿床地质特征 |
2.1 区域地质背景 |
2.2 金矿床地质特征 |
3 矿物共生组合与金沉淀的热力学环境 |
3.1 矿物组合演化的热力学预测 |
3.2 金沉淀的热力学机制 |
4 含CO2体系流体不混溶与石英溶解-沉淀对金成矿的控制 |
5 黄铁矿沉淀对金成矿精细过程的指示 |
5.1 与含As黄铁矿相关的“不可见金”矿化 |
5.2“可见金”矿化形成过程与沉淀机制 |
6 成矿作用对可见金成色的控制 |
6.1 可见金成色的时空演化 |
6.2 三山岛金矿金成色时空演化的控制因素 |
7 成矿末端效应对胶东金矿成因的制约 |
8 结语和展望 |
(3)微波作用下载金硫化物中单质硫的释放及其浸金机制研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 黄金矿产资源概况 |
2.1.1 黄金资源储量分布 |
2.1.2 金的赋存状态研究 |
2.2 非氰浸金技术的研究进展 |
2.2.1 含硫试剂浸金的研究现状 |
2.2.2 金精矿预处理方法的概述 |
2.3 黄铁矿高温相变的研究进展 |
2.4 微波在湿法冶金领域的应用 |
2.4.1 微波加热的基本原理及优势 |
2.4.2 微波焙烧强化浸出研究现状 |
2.5 小结 |
3 研究内容与方法 |
3.1 研究目标 |
3.2 研究技术路线 |
3.3 研究内容 |
3.4 研究方法 |
3.4.1 试验研究方法 |
3.4.2 分析检测方法 |
3.5 试验原料、药剂与设备 |
3.5.1 试验原料及性质 |
3.5.2 试验药剂与设备 |
4 载金硫化物热分解的热力学及原位相变过程 |
4.1 单质硫生成过程的热力学分析 |
4.2 载金硫化物的热分解特性研究 |
4.3 黄铁矿热分解相变的原位研究 |
4.3.1 高温原位X射线衍射分析 |
4.3.2 高温原位Raman光谱分析 |
4.3.3 表面微观形貌的演变过程 |
4.4 小结 |
5 微波场中载金硫化物的介电响应及失重行为 |
5.1 微波作用下黄铁矿升温行为研究 |
5.2 微波场中载金硫化物的介电响应 |
5.3 微波场中黄铁矿热分解失重行为 |
5.3.1 单因素条件试验研究 |
5.3.2 多因素响应曲面研究 |
5.4 小结 |
6 微波作用下单质硫的释放机理及其浸金机制 |
6.1 载金黄铁矿微波热分解的相变行为研究 |
6.1.1 不同辐射时间下的物相转变规律 |
6.1.2 不同加热温度下的物相转变规律 |
6.1.3 硫元素赋存状态的变化规律 |
6.1.4 微波作用下晶体结构的演变 |
6.2 微波热分解对金嵌布特征的影响 |
6.3 单质硫的表征及其浸出性能研究 |
6.3.1 单质硫晶体结构的表征研究 |
6.3.2 单质硫浸金性能的验证试验 |
6.4 单质硫在碱性溶液中浸金作用机制研究 |
6.4.1 含硫试剂浓度对金溶出的影响 |
6.4.2 加热温度对金溶出过程的影响 |
6.4.3 铜氨配合物对浸金过程的影响 |
6.4.4 单质硫来源对浸金过程的影响 |
6.5 小结 |
7 微波辐射对硫元素转化的促进作用及其机理 |
7.1 微波辐射与常规加热下相变过程的对比研究 |
7.1.1 加热方式对物相转变行为的影响 |
7.1.2 加热方式对产物中硫含量的影响 |
7.1.3 加热方式对硫形态转化的影响 |
7.1.4 加热方式对颗粒结构形貌的影响 |
7.2 微波辐射与常规加热下反应动力学对比研究 |
7.3 黄铁矿热分解过程的从头算分子动力学模拟 |
7.4 外加电场对黄铁矿电子结构的影响 |
7.5 外加磁场对黄铁矿分解反应的影响 |
7.6 小结 |
8 结论与创新点 |
8.1 主要结论 |
8.2 创新点 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(4)安徽宣城茶亭铜金矿床成矿作用研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
文中所用缩写及其对应名称 |
第一章 绪论 |
1.1 选题依据及意义 |
1.2 研究现状及存在问题 |
1.2.1 斑岩型铜(金)矿床研究现状 |
1.2.2 长江中下游斑岩矿床研究现状 |
1.2.3 存在问题 |
1.3 研究目标、内容及技术路线 |
1.4 完成工作量 |
1.5 主要认识和创新点 |
第二章 区域地质特征 |
2.1 地层 |
2.2 构造 |
2.3 岩浆岩 |
2.4 矿产 |
第三章 矿床地质特征 |
3.1 矿集区地质特征 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.1.4 矿产分布 |
3.2 矿床地质特征 |
3.2.1 地层 |
3.2.2 构造 |
3.2.3 岩浆岩 |
3.2.4 角砾岩特征 |
3.2.5 蚀变及矿化 |
3.2.6 矿石、脉石矿物组成及结构构造 |
3.2.7 成矿期次划分 |
第四章 样品准备及实验分析方法 |
4.1 样品准备阶段 |
4.2 主要分析方法 |
4.2.1 全岩主微量分析 |
4.2.2 电子探针主量成分分析 |
4.2.3 LA-ICP(MC)-MS原位微区成分分析 |
4.2.4 全岩Sr-Nd同位素分析 |
4.2.5 SHRIMP原位微区S-O同位素 |
4.2.6 辉钼矿Re-Os模式年龄分析 |
4.2.7 流体包裹体测温 |
第五章 岩浆岩年代学及成因 |
5.1 岩浆岩年代学特征 |
5.2 岩浆岩全岩地球化学 |
5.2.1 主、微量元素地球化学 |
5.2.2 Sr-Nd-Hf同位素地球化学 |
5.3 岩浆岩矿物地球化学 |
5.3.1 角闪石 |
5.3.2 斜长石 |
5.3.3 黑云母 |
5.3.4 磁铁矿 |
5.3.5 磷灰石 |
5.4 讨论 |
5.4.1 成岩时代 |
5.4.2 岩浆岩性质 |
5.4.3 岩浆起源 |
5.4.4 岩浆演化 |
5.4.5 成岩模式 |
5.4.6 成矿指示意义 |
第六章 矿床地球化学及成矿作用 |
6.1 成矿年代学 |
6.2 流体包裹体特征 |
6.2.1 包裹体岩相学特征 |
6.2.2 包裹体温度测试结果 |
6.3 热液矿物地球化学 |
6.3.1 黑云母 |
6.3.2 磁铁矿 |
6.3.3 硬石膏 |
6.3.4 石榴子石 |
6.3.5 石英 |
6.4 讨论 |
6.4.1 流体的物理化学条件变化 |
6.4.2 成矿流体来源 |
6.4.3 角砾岩成因 |
6.4.4 矽卡岩与成矿的关系 |
6.4.5 铜金沉淀机制 |
第七章 矿床成因及勘查指示 |
7.1 矿床成因与成矿模式 |
7.1.1 矿床成因 |
7.1.2 成矿模式 |
7.2 与岩浆弧环境及长江中下游成矿带斑岩矿床对比 |
7.2.1 与岩浆弧环境斑岩矿床对比 |
7.2.2 与长江中下游成矿带典型斑岩矿床对比 |
7.3 成矿条件及找矿方向 |
7.3.1 围岩地层 |
7.3.2 控矿构造 |
7.3.3 成矿岩浆岩 |
7.3.4 找矿方向 |
第八章 主要结论 |
参考文献 |
附表 |
攻读博士学位期间的学术活动及成果 |
(5)近十年来中国矿床地球化学研究进展简述(论文提纲范文)
0 引言 |
1 岩浆矿床地球化学研究进展 |
1.1 岩浆硫化物矿床 |
1.1.1 造山带找矿工作取得突破 |
1.1.2 成矿构造背景的新认识 |
1.1.3 揭示岩浆通道系统中硫化物熔体的运移和聚集机制 |
1.1.4 贱金属硫化物中铂族元素的赋存状态新认识 |
1.2 岩浆氧化物矿床 |
1.2.1 成矿母岩浆恢复取得突破性进展 |
1.2.2 钒钛磁铁矿矿床的成因争议 |
1.2.3 建立钒钛磁铁矿的岩浆通道成矿模型 |
2 斑岩(矽卡岩)-浅成低温热液型铜矿床地球化学研究进展 |
2.1 碰撞型斑岩铜矿成矿模型的创新 |
2.2 斑岩铜矿成矿过程的精细刻画 |
2.3 矽卡岩-浅成低温热液型矿床研究进展 |
3 与花岗岩相关的钨锡矿床地球化学研究进展 |
3.1 钨锡成矿时代的精确限定 |
3.2 钨锡富集过程与机制的精细刻画 |
3.3 幔源物质参与钨锡成矿的新认识 |
4 碳酸岩型稀土元素矿床地球化学研究进展 |
4.1 碳酸岩型稀土矿床成矿时限的精确厘定 |
4.2 揭示碳酸岩型稀土矿床的物质来源和成因机制 |
5 低温矿床地球化学研究进展 |
5.1 卡林型金矿床 |
5.1.1 成矿年代和动力学背景 |
5.1.2 成矿物质来源、流体演化和成矿作用过程 |
5.1.3 区域成矿作用对比 |
5.2 密西西比河谷型(MVT)铅锌矿床 |
5.2.1 成矿年代学与成矿动力学背景 |
5.2.2 硫化物微量元素组成及矿床成因类型 |
5.2.3 成矿物质基础和成矿流体来源与演化 |
(1)成矿物质来源。 |
(2)碳酸盐岩在成矿过程中的作用。 |
(3)成矿流体来源与演化。 |
5.2.4 区域成矿模型 |
6 原位分析技术在矿床研究中的应用 |
6.1 矿石矿物/副矿物微区原位U-Pb定年 |
6.2 同位素组成微区原位分析 |
6.3 单矿物微量元素组成微区原位分析 |
6.4 单个流体包裹体组成研究 |
7 实验地球化学在矿床研究中的应用 |
8 结语 |
(6)胶西北金矿集区金成矿作用与成矿模型(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题依据及研究意义 |
1.2 国内外研究现状 |
1.2.1 胶西北金矿集区成矿地质背景 |
1.2.2 胶西北金矿集区金矿床时空分布规律与成矿物质来源 |
1.2.3 胶西北金矿集区金矿床成矿作用与成矿模型 |
1.2.4 国内外其它典型金矿集区的研究现状 |
1.3 研究内容、技术路线及实物工作量 |
1.3.1 主要研究内容 |
1.3.2 技术路线 |
1.3.3 实物工作量 |
1.4 论文主要创新点 |
第2章 胶西北金矿集区地质背景 |
2.1 自然地理概况 |
2.2 区域地质概况 |
2.2.1 区域地层 |
2.2.2 区域构造 |
2.2.3 区域岩浆岩 |
2.3 典型矿床地质特征概述 |
2.3.1 三山岛金矿 |
2.3.2 新立金矿 |
2.3.3 焦家金矿 |
2.3.4 望儿山金矿 |
2.3.5 玲珑金矿 |
2.3.6 大尹格庄金矿 |
第3章 胶西北金矿集区地球物理与地球化学特征 |
3.1 区域地球物理特征 |
3.1.1 物性参数特征 |
3.1.2 区域重力场特征 |
3.1.3 区域磁场特征 |
3.2 区域地球化学特征 |
3.2.1 金元素含量特征 |
3.2.2 区域地球化学异常特征 |
第4章 金矿床成矿时代及控矿因素 |
4.1 金矿床成矿时代 |
4.2 岩浆活动与金成矿作用 |
4.3 构造对金矿化的控制 |
第5章 胶西北金矿集区金成矿作用特征 |
5.1 金矿物微区地球化学特征 |
5.1.1 金矿物特征 |
5.1.2 金矿物原位微区元素含量特征 |
5.1.3 微区微量元素对金成矿作用的指示 |
5.2 岩石地球化学特征 |
5.2.1 主量元素地球化学特征 |
5.2.2 微量元素地球化学特征 |
5.2.3 稀土元素地球化学特征 |
5.2.4 典型金矿床与元素对应分析 |
5.3 围岩蚀变地球化学特征 |
5.3.1 围岩蚀变类型 |
5.3.2 蚀变过程元素带入带出分析 |
5.4 流体包裹体特征 |
5.4.1 流体包裹体岩相学 |
5.4.2 流体包裹体显微测温与成分特征 |
5.5 同位素特征 |
5.5.1 氢-氧同位素 |
5.5.2 硫同位素 |
5.5.3 碳-氧同位素 |
5.5.4 其它同位素 |
第6章 胶西北金矿集区金成矿作用与成矿模型 |
6.1 胶西北金矿集区成矿机理 |
6.2 中生代岩石圈减薄与金成矿作用 |
6.3 胶西北金矿集区成矿模型 |
第7章 结论与展望 |
7.1 主要结论 |
7.2 研究展望 |
致谢 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
(7)云南白秧坪铅锌多金属矿床热力学形成条件与矿床成因分析(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题依据及研究现状 |
1.1.1 选题依据 |
1.1.2 兰坪盆地铅锌多金属矿床研究现状 |
1.1.3 白秧坪铅锌多金属矿床研究现状 |
1.1.4 国内银、钴矿床研究现状 |
1.2 研究内容与工作量 |
1.2.1 研究内容 |
1.2.2 主要实物工作量 |
2 区域地质概况 |
2.1 地层 |
2.1.1 古生界 |
2.1.2 中生界 |
2.1.3 新生界 |
2.2 构造 |
2.3 岩浆作用 |
2.4 变质岩 |
3 白秧坪矿床地质特征 |
3.1 矿体特征 |
3.1.1 容矿构造 |
3.1.2 赋矿围岩 |
3.1.3 矿区矿石构造 |
3.2 矿石特征 |
3.2.1 成矿期次 |
3.2.2 矿石的结构、构造 |
3.2.3 矿物化学成分特征 |
3.2.4 矿物成因意义 |
3.3 小结 |
4 硫同位素地质温度计 |
4.1 硫同位素地球化学特征 |
4.2 硫同位素地质温度计 |
5 热力学相图原理与应用 |
5.1 热力学相图原理 |
5.2 Eh-pH相图 |
5.3 离子活度与pH相图 |
5.4 小结 |
6 其他元素富集成矿过程分析 |
6.1 Ag元素富集成矿过程 |
6.2 Co元素赋存状态研究 |
6.2.1 Co的地球化学意义 |
6.2.2 Co元素迁移过程 |
7 白秧坪铅锌多金属矿床的成因模式 |
7.1 建立成因模式的证据 |
7.1.1 矿物学特征 |
7.1.2 成矿物质来源 |
7.1.3 热力学相图特征 |
7.1.4 成矿与区域地质演化关系 |
7.2 成矿过程及矿床成因模式 |
8 结论 |
致谢 |
参考文献 |
个人简历 |
(8)南陵—宣城矿集区成矿过程数值模拟与三维成矿预测(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章、绪论 |
1.1 选题背景及研究意义 |
1.1.1 依托项目 |
1.1.2 选题依据与研究意义 |
1.1.3 拟解决的关键问题 |
1.2 国内外研究现状 |
1.2.1 数值模拟在地质学与矿床学研究中的应用 |
1.2.2 三维成矿预测研究现状 |
1.3 成矿过程数值模拟研究技术难点及存在问题 |
1.3.1 研究技术难点 |
1.3.2 目前存在问题 |
1.4 研究目标与研究路线 |
1.4.1 研究目标 |
1.4.2 研究路线 |
1.5 研究主要创新点 |
1.6 研究工作量 |
第二章、研究区地质背景 |
2.1 区域地质背景 |
2.1.1 构造 |
2.1.2 地层 |
2.1.3 岩浆岩 |
2.2 矿床地质特征 |
2.2.1 茶亭斑岩型铜金矿床 |
2.2.2 麻姑山矽卡岩型铜钼矿床 |
2.3 本章小结 |
第三章、研究方法 |
3.1 三维地质建模方法与软件 |
3.1.1 显式三维建模与相关建模软件 |
3.1.2 隐式三维建模与相关建模软件 |
3.2 数值计算方法 |
3.2.1 有限差分方法与Flac3D软件 |
3.2.2 有限元方法与Comsol Multiphysics软件 |
3.3 成矿过程数值模拟耦合过程与技术方法流程 |
3.3.0 成矿过程数值模拟耦合过程 |
3.3.1 基于Flac~(3D)的矿田尺度三维成矿过程数值模拟方法流程 |
3.3.2 基于 Comsol Multiphysics 的成矿过程数值模拟技术方法流程 |
3.4 本章小结 |
第四章、数据整合及三维地质建模 |
4.1 原始数据收集 |
4.2 2.5D 重磁联合反演 |
4.2.1 重磁联合反演剖面布设 |
4.2.2 重磁联合反演结果 |
4.3 三维地质建模 |
4.3.1 地表数字高程提取 |
4.3.2 三维地质建模 |
4.4 数据转换 |
4.4.1 目标格式选择 |
4.4.2 实现数据转换 |
4.4.3 三维地质模型转换结果 |
4.5 本章小结 |
第五章、矿床尺度成矿过程数值模拟 |
5.1 茶亭斑岩型铜金矿床数值模拟 |
5.1.1 成矿过程概念模型 |
5.1.2 数值模拟简化模型 |
5.1.3 数值模拟数学模型 |
5.1.4 成矿过程数值模拟模型 |
5.1.5 成矿过程数值模拟结果 |
5.2 麻姑山矽卡岩型铜钼矿床成矿过程数值模拟 |
5.2.1 成矿过程概念模型 |
5.2.2 数值模拟简化模型 |
5.2.3 数值模拟数学模型 |
5.2.4 成矿过程数值模拟模型 |
5.2.5 成矿过程数值模拟结果 |
5.2.6 岩枝形态敏感性测试 |
5.3 本章小结 |
第六章、矿田尺度三维成矿过程数值模拟与成矿预测 |
6.1 狸桥-铜山矿田三维成矿过程数值模拟与成矿预测 |
6.1.1 成矿过程数学模型 |
6.1.2 成矿过程数值模拟模型 |
6.1.3 三维成矿过程数值模拟与成矿预测结果 |
6.2 宣城-麻姑山矿田三维成矿过程数值模拟与成矿预测 |
6.2.1 成矿过程数学模型 |
6.2.2 成矿过程数值模拟模型 |
6.2.3 三维成矿过程数值模拟与成矿预测结果 |
6.3 本章小结 |
第七章、讨论 |
7.1 矿床尺度成矿过程数值模拟结果讨论 |
7.1.1 茶亭矿床数值模拟结果讨论 |
7.1.2 麻姑山矿床数值模拟结果讨论 |
7.2 矿田尺度三维成矿数值模拟与成矿预测结果讨论 |
7.3 本次工作的进展 |
7.4 本章小结 |
第八章、结论 |
参考文献 |
附录1 南陵-宣城地区区域地层简表 |
附录2 Comsol软件主要符号列表 |
攻读博士学位期间的学术活动及成果情况 |
1 )参加的学术交流与科研项目 |
2 )发表的学术论文(含专利和软件着作权) |
(9)贵州省晴隆县大厂锑矿成矿模式综合研究(论文提纲范文)
摘要 |
Abstract |
第1章 概述 |
1.1 大厂锑矿交通位置及自然地理 |
1.2 大厂锑矿以往地质工作程度 |
1.3 全球锑矿床主要成因类型及研究现状 |
1.4 选题依据、研究意义 |
1.5 研究内容、方法、技术路线 |
1.6 论文完成实物工作量 |
第2章 区域成矿地质背景 |
2.1 区域大地构造背景 |
2.2 区域地层 |
2.3 区域构造 |
2.3.1 断裂构造 |
2.3.2 褶皱构造 |
2.4 岩浆岩 |
2.5 区域变质作用 |
2.6 区域地球物理、地球化学特征 |
第3章 矿床地质特征 |
3.1 矿区地层、构造、岩浆岩 |
3.2 矿体地质特征 |
3.2.1 赋矿层位及岩石 |
3.2.2 矿体产状、规模及数量 |
3.3 矿石特征 |
3.3.1 矿物组成 |
3.3.2 矿石化学成分 |
3.3.3 矿石结构、构造 |
3.3.4 矿石类型 |
3.4 围岩蚀变 |
3.5 成矿阶段、成矿期划分 |
第4章 流体包裹体特征 |
4.1 样品的采集与制备 |
4.2 包裹体显微岩相学特征 |
4.2.1 包裹体形态及大小 |
4.2.2 包裹体的分布 |
4.2.3 包裹体的类型 |
4.3 包裹体物理性质 |
4.3.1 包裹体均一温度、冰点温度 |
4.3.2 包裹体盐度 |
4.3.3 包裹体密度和压力 |
4.4 包裹体成分 |
4.4.1 气相成分 |
4.4.2 液相成分 |
第5章 同位素地球化学特征 |
5.1 氢、氧同位素 |
5.2 硫、铅同位素 |
5.3 成矿时代 |
第6章 矿床成因讨论 |
6.1 成矿物质来源 |
6.2 成矿流体类型及其迁移机制 |
6.3 成因模式讨论 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
图版 |
(10)中国金川Ni-Cu(PGE)硫化物矿床深部成矿过程的实验研究(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
§1.1 研究背景和现状 |
1.1.1 岩浆硫化物矿床研究现状 |
1.1.2 矿床源区成矿母岩浆的迁移机制 |
1.1.3 成矿模拟实验 |
§1.2 存在科学问题 |
§1.3 研究目标和内容 |
§1.4 论文工作量 |
第二章 实验仪器和测试分析方法 |
§2.1 高温高压仪器及方法 |
2.1.1 5GPa Griggs高温高压流变仪 |
2.1.2 150吨活塞-圆筒型压机 |
§2.2 X-ray显微成像技术 |
§2.3 电子背散射衍射(EBSD) |
§2.4 纳米离子探针(Nano-SIMS) |
§2.5 实验产物显微结构和成分分析 |
第三章 金川Ni-Cu(PGE)硫化物矿床地质背景和原位硫同位素研究 |
§3.1 金川矿床地质背景 |
3.1.1 区域地质特征 |
3.1.2 矿床地质概况 |
§3.2 金川矿床原位微区硫同位素特点 |
第四章 静态和动态对比实验研究 |
§4.1 静态部分熔融实验 |
4.1.1 静态实验原始样品和实验条件 |
4.1.2 两相不混熔熔体的二维分布 |
4.1.3 两相不混熔熔体的三维分布 |
§4.2 简单体系(橄榄石+熔体)的动态实验 |
§4.3 复杂体系(合成地幔岩+熔体)的变形实验 |
4.3.1 轴压变形实验 |
4.3.2 剪切变形实验 |
§4.4 两相不混熔熔体的萃取机制 |
4.4.1 静态萃取机制 |
4.4.2 动力学萃取机制 |
第五章 分层反应实验 |
§5.1 反应渗透分层实验 |
5.1.1 反应渗透实验结果 |
5.1.2 熔体迁移驱动力-反应渗透不稳定性 |
§5.2 气泡浮选分层实验 |
5.2.1 理论背景 |
5.2.2 气泡浮选实验结果和讨论 |
第六章 应用于岩石圈地幔的熔融过程和岩浆硫化物矿床的成因 |
§6.1 从变形实验到天然部分熔融地幔 |
§6.2 从分层反应实验到天然部分熔融地幔 |
第七章 主要结论及存在的问题 |
§7.1 主要结论 |
§7.2 存在的问题 |
致谢 |
参考文献 |
附录 Ⅰ 元素含量标准化方法和步骤 |
附录 Ⅱ 二维和三维显微结构图片分析方法 |
附表1 金川岩体主要造岩矿物的氧化物成分 |
附表2 金川矿床主要金属硫化物的成分 |
四、热力学在矿床中的应用(下)(论文参考文献)
- [1]富碲化物金矿床中碲的成矿作用研究进展[J]. 胡新露,姚书振,何谋惷,俎波,曾丽平,丁振举. 地球科学, 2021(11)
- [2]胶东金成矿系统的末端效应[J]. 范宏瑞,蓝廷广,李兴辉,M.SANTOSH,杨奎锋,胡芳芳,冯凯,胡换龙,彭红卫,张永文. 中国科学:地球科学, 2021(09)
- [3]微波作用下载金硫化物中单质硫的释放及其浸金机制研究[D]. 张晓亮. 北京科技大学, 2021(08)
- [4]安徽宣城茶亭铜金矿床成矿作用研究[D]. 肖庆玲. 合肥工业大学, 2021
- [5]近十年来中国矿床地球化学研究进展简述[J]. 钟宏,宋谢炎,黄智龙,蓝廷广,柏中杰,陈伟,朱经经. 矿物岩石地球化学通报, 2021(04)
- [6]胶西北金矿集区金成矿作用与成矿模型[D]. 尹业长. 吉林大学, 2020(01)
- [7]云南白秧坪铅锌多金属矿床热力学形成条件与矿床成因分析[D]. 张培. 中国地质大学(北京), 2020(08)
- [8]南陵—宣城矿集区成矿过程数值模拟与三维成矿预测[D]. 胡训宇. 合肥工业大学, 2020
- [9]贵州省晴隆县大厂锑矿成矿模式综合研究[D]. 李梦霞. 成都理工大学, 2020(04)
- [10]中国金川Ni-Cu(PGE)硫化物矿床深部成矿过程的实验研究[D]. 王振江. 中国地质大学, 2020(03)