一、中国东南部火山岩型铀矿床碳同位素组成和∑CO_2来源研究(论文文献综述)
赵宇霆[1](2021)在《诸广南长江地区花岗岩型铀矿成矿流体作用研究》文中研究说明花岗岩型铀矿铀矿我国铀矿床主要的工业类型,诸广山铀矿田则是我国华南花岗岩型矿床的重要矿田之一。长江地区作为诸广山矿田的重要组成部分,以往大量研究只针对于单个矿床,对区域中各个矿床的研究和对比存在不足。成矿流体研究一直是热液型矿床研究的核心问题之一,对诸广南长江地区热液型铀矿床开展系统性的成矿流体作用研究,可以完善和补充该地区铀矿床的成矿机制问题。长江地区的主要铀矿床分布在主断裂棉花坑断裂、里周断裂、黄溪水断裂、油洞断裂挟持位置的近南北向构造中,矿体产状相对稳定铀矿石类型多样,矿化延伸性好,在长江1号深钻的深部发现的厚大工业矿体,这证明区域上深部有较大的找矿空间。长江地区铀矿化矿物主要为沥青铀矿、伴生金属矿物有黄铁矿、方铅矿、闪锌矿、黄铜矿等,脉石矿物主要有石英、萤石、伊利石、方解石等。根据各个铀矿床的实际矿化情况,铀矿化可以划分为三期三阶段,即成矿前期、成矿期和成矿后期,其中成矿期可分为三个阶段:成矿早阶段、主成矿阶段和成矿晚阶段。其中成矿早阶段以红色微晶石英为特征,主成矿阶段主要为白色微晶石英或无色石英脉和紫色萤石,而成矿晚阶段则伴随浅色萤石、方解石和梳状石英的发育。成矿流体的组成和性质方面,棉花坑矿床的成矿流体由主成矿阶段的低盐度(6.15wt%Na Cleqv)、中高温(308℃)的Na Cl-KCl-Ca SO4-H2O体系逐渐演化为成矿后期低盐度(3.00wt%Na Cleqv)低温(147℃)的简单Na Cl-Ca SO4-H2O体系。长排地区铀矿床(长江1号矿体)成矿流体在成矿早阶段为低盐度(10.77wt%Na Cleqv)、中高密度、中高温(291℃)的高硫的Na Cl(F)-KCl(F)-Ca SO4-H2O的体系,而在成矿后期转化为低温(152℃)、低盐度(3.9wt%Na Cleqv)、高密度的低硫的Na Cl(F)-KCl(F)-Ca SO4-H2O体系。成矿流体为相对富含Ca2+的流体,且在成矿期萤石中包裹体气相成分主要为氢气,表明流体具还原性。书楼丘矿床的成矿流体由成矿期低盐度(5.4wt%Na Cleqv)、中高温(284℃)、中密度的流体转化为后期低温(189℃)、低盐度(4.9wt%Na Cleqv)、高密度的流体。水石矿床成矿后期的流体具有低盐度(3.87wt%Na Cleqv)、中高密度、低温(157℃)的特征。蚀变岩石地球化学研究表明,铀成矿流体为富碱土元素(Ca),大离子的过渡元素(Co、Cr、Mo)且成矿流体富集重稀土、富含成矿元素(U)以及F等挥发分,且成矿流体属还原性流体。成矿流体来源方面,成矿流体具有岩浆热液和深源地幔流体的特征,是岩浆热液作用于深部循环的地下水沿构造上涌与产铀岩体作用萃取成矿物质,并在运移和成矿过程中混入了大气降水,在成矿晚阶段和成矿后期大气降水的比例逐渐增大,并在后期作用于岩体形成较为广泛的伊利石蚀变。成矿流体的演化方面,从成矿前期到成矿期再到成矿后期,成矿流体由含幔源组分的碱性、还原性高温高压高硫流体逐渐经历降温减压和流体混合作用,演化成为具大气降水特征的氧化性、酸性流体。长江地区铀成矿是中生代大陆热点作用下,来自深部地壳和地幔的流体沿着区域深大断裂不断与富铀岩体作用富集了U元素并在浅部与大气降水混合后逐渐将铀矿卸载。长江1号的深部铀矿化表明了该地区向深部具有较好的成矿潜力。
王君贤[2](2021)在《新疆大长沟盆地下侏罗统八道湾组含油页岩系精细分析及古环境重建》文中研究指明大长沟盆地下侏罗统八道湾组发育有油页岩、烛藻煤和腐殖煤等多种富有机质沉积岩,是精细分析含油页岩系有机质富集机制和古环境重建的的良好载体。本论文基于沉积学、层序地层学、有机岩石学、元素地球化学、有机地球化学和同位素地球化学等理论与方法,对大长沟盆地含油页岩系古沉积环境、古气候、有机质来源与富集机制,及沉积有机质对环境变化的响应等进行了精细研究。根据岩心、露天矿剖面和测井数据,本区识别出主要沉积相类型为湖泊和三角洲相,并进一步划分为半深湖-深湖、浅湖、三角洲前缘和三角洲平原4种沉积亚相和8种沉积微相,油页岩和烛藻煤发育在半深湖-深湖环境中,腐殖煤形成于三角洲平原河道间的沼泽环境。根据岩心和测井资料将八道湾组划分为两个三级层序,通过沉积演化分析认为层序II沉积时期物源供给方向稳定,主要物源区为盆地东北方向。厚层油页岩主要在层序II高水位体系域(HST)时期的半深湖-深湖环境中发育,烛藻煤与之共生。岩心及剖面样品所揭露油页岩具有整体较高的有机碳含量(TOC)(平均为13.0 wt.%)和生烃潜力(平均为77mg/g)。腐殖煤和烛藻煤均具有高的TOC含量(平均为51.6 wt.%),但烛藻煤的生烃潜力S1+S2(平均为242 mg/g)要高于腐殖煤(平均为178 mg/g)。油页岩与烛藻煤具有相似的氢指数(HI)(平均值分别为531和551 mg HC/g TOC),腐殖煤HI明显低于前二者(平均为268 mg HC/g TOC)。油页岩有机质类型为I型和II1型,烛藻煤为II1型,腐殖煤为II2型。Tmax(平均439℃)和Ro(0.37~0.43%)测定结果显示八道湾组有机质成熟度较低,处于未熟-低熟阶段。工业分析表明,烛藻煤具有最高的含油率(最高达24.4%,平均为18.3%),高于腐殖煤(最高为13.1%,平均为12.2%)和油页岩(最高达12.7%,平均为7.4%)。油页岩灰分(平均为75.8%)要高于两种煤(平均为36.9%)。应用生物标志化合物、有机显微组分和有机碳同位素对油页岩、烛藻煤和腐殖煤的有机质来源进行分析,结果显示油页岩中有机质来源以藻类体为主,其次为内源挺水植物和陆源高等植物。烛藻煤和腐殖煤皆以高等植物为主要有机质来源,但前者具有相对较高的藻类体含量。分析认为烛藻煤中的陆源有机质经历了搬运和分选作用,使富氢组分沉积于较深水体,从而导致了烛藻煤具有较高的生烃潜力,腐殖煤中有机质则为高等植物近源或原地沉积。通过微量元素富集系数EF、黄铁矿化度替代指标(DOPT)、生标参数植烷和姥鲛烷比值(Pr/Ph)以及重排甾烷相对含量对水体的氧化还原性进行分析,结合岩相学特征,认为八道湾组油页岩沉积环境为贫氧环境,烛藻煤沉积于贫氧-还原环境。结合Sr/Ba,Ca/Mg元素比值和伽马蜡烷指数(GI)对盐度特征进行分析,认为油页岩沉积时期水体为淡水环境,烛藻煤沉积时期水体为半咸水-咸水环境。利用元素比值C-value和Sr/Cu、有机碳同位素、孢粉和粘土矿物组成等多种古气候代用参数,认为油页岩和烛藻煤共同形成于温暖湿润的气候背景下,但烛藻煤是相对湿热气候背景下的产物,较高的蒸发量使沉积环境盐度增高,同时高等植物输入量增加,有利于烛藻煤的形成。层序I和层序II的HST时期气候最为温暖湿润,致使湖泊内源生产力提升,增加了藻类输入,促进了厚层油页岩的形成。由此表明,古气候是控制层序地层格架内不同沉积时期的沉积物类型和油页岩展布特征的首要因素。长链正构烷烃(nC27,29,31)单体碳同位素的的垂向变化趋势可以较好的反映沉积时期古大气CO2浓度变化。根据C3植物碳同位素构成对环境CO2浓度的协变关系,计算了油页岩主矿层沉积时期对应的大气CO2浓度为593-2546 ppm,平均为1172 ppm(+279,-135ppm),整体较高并具有较大的波动范围。油页岩沉积初期伴随着相对较高的大气CO2浓度及温暖湿润的气候背景导致了大规模的湖侵,并诱发了生物生产力的提高。该阶段的大气CO2与较高的惰质体含量对应,是在高CO2浓度背景下火灾发生频率较高所致。烛藻煤与CO2高值点具有一定耦合性,即CO2浓度的升高有利于高等植物的发育,也提高了湖泊的生物生产力,促使了湖相烛藻煤的形成。
李子颖,秦明宽,范洪海,蔡煜琦,程纪星,郭冬发,叶发旺,范光,刘晓阳[3](2021)在《我国铀矿地质科技近十年的主要进展全文替换》文中研究说明本文总结了近十年我国铀矿地质工作的主要进展,包括铀矿成矿理论创新、铀成矿类型和成矿区带划分、全国铀资源潜力评价、主要工业铀矿类型研究评价、相山科学深钻、零价态金属铀的发现及新矿物发现等;论述了砂岩型铀矿快速评价、热液型铀矿攻深找盲、大数据找矿、遥感高光谱、钻探工艺及分析测试等技术创新成果;概述了依据理论创新及技术方法集成创新在国内外铀矿找矿领域的重大突破;展望了铀矿地质发展方向。
余辉[4](2021)在《相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景》文中研究说明江西相山火山盆地产出我国规模最大、品位最富的火山岩型铀矿床,是国内最为重要的铀矿生产基地之一,但其铀矿成因模式依然存在诸多争议。近年来,相山火山盆地深部新发现垂向蚀变幅度达千米的铅-锌-银矿化,深部铀多金属找矿潜力凸显。由于深部结构和深层动力过程是制约内生多金属矿床形成的关键,且成矿作用是岩浆演化的阶段或最终产物。因此,采用大地电磁测深法对相山火山盆地深部结构进行探测,揭示相山火山盆地穿地壳岩浆系统的空间展布和物质状态,研究岩浆活动对铀成矿深部过程与富集形式的制约,可以从电性学的角度为研究区岩浆地球动力学和铀成矿作用研究提供新的认识,对相山火山盆地深部找矿突破具有重要指导意义。相山火山盆地大地电磁原始时间序列数据经过傅里叶变换和一系列去噪处理后获得了高质量的阻抗张量数据,进一步的相位张量和感应矢量分析表明,研究区浅部和下地壳没有明显的构造走向,但在中地壳可见近北东东向的构造走向,整体呈现明显的三维地电特征。为了获得相山火山盆地深部三维电性结构,首先通过建立既能保证空气电阻率固定不变又能保证模型平滑约束的协方差矩阵统一表达式解决起伏地形的问题,实现了基于L-BFGS法的带地形大地电磁三维反演,并采用正则化因子冷却法和基于Wolfe条件的步长搜索策略,提升了反演的稳定性。该算法与开源非线性共轭梯度反演算法的对比试算验证了其正确性和可靠性。然后采用该反演方法对研究区野外观测数据进行三维反演,对比分析了不同反演方法的反演效果,并通过改变反演参数和数据分量进行了大量反演试算,最终获得了相山火山盆地稳定可靠的三维电性结构模型。相山火山盆地三维电性结构模型显示研究区中上地壳范围内整体表现出高阻特征,对应着该地区致密稳定的变质岩基底。位于相山主峰附近的古火山通道表现出高导特征,这与古火山通道内的高渗透率有关。岩浆在上升侵入过程中产生的水力压裂作用致使岩浆流经处的渗透率大幅度提高,为含盐流体下渗提供了有利条件,从而形成了古火山通道内的高导属性。该火山通道在空间上向盆地北西方向下倾,控制着岩浆从深部岩浆房向上喷出-溢流。盆地西北侧的高导侵入岩体是研究区古老岩浆通道系统的重要组成,其高导特征被解释为富碳火成侵入岩体的电性反映。研究区多阶段岩浆活动产生的火成碳以及红盆有机物被构造运动输送到地壳深部形成石墨并在后续岩浆活动中被重新活化造就了该侵入岩体的高导属性。该深成岩体的侵位方式受北东向区域深断裂产生的次级断裂控制,反映了区域伸展构造环境,其形成可能与古太平洋板块俯冲后撤有关。整体来看,研究区古老岩浆通道系统表现为垂向伸展、穿地壳的网络格架。结合区域地质资料,揭示了相山火山盆地的构造体系及其对铀成矿的控制作用,指出区域性深断裂控制着相山火山盆地岩浆活动的就位,为铀矿床的形成奠定了基本格架,并推断切基底的深断裂为成矿流体向上运移提供了有利通道,浅层的裂隙网络、组间界面、不整合面及其与断裂复合的有利空间保证了铀元素沉淀富集。在电性结构研究的基础上,结合岩石学和地球化学等资料,进一步提出了相山火山盆地铀成矿模型,该模型完整地刻画了研究区铀成矿作用中“源-运-储”的概貌,指出相山火山盆地的断裂构造体系和古老穿地壳岩浆系统共同构成了研究区的构造-岩浆系统,前者是盆地内热液对流循环的有利场所,后者是驱动该热液对流循环的主要热源并提供了丰富的铀成矿物质来源。
高海东[5](2021)在《相山铀矿田磷的地球化学特征及其铀成矿意义》文中认为在相山铀矿田研究中发现,富大铀矿体中磷含量明显增高,矿石中P2O5与U、Th、REE元素的含量上总体上呈正相关关系。因此,本文开展相山矿田内各地质体中磷与磷灰石的地球化学特征、矿物学、模拟实验等研究,分析磷对U、Th、REE元素的活化、运移、沉淀富集的影响,探索铀矿石中磷的特征及对铀成矿的意义。首先,测试了各类背景岩石、弱蚀变围岩、强蚀变近矿围岩、不同品位铀矿石和主要造岩矿物及其对应的蚀变矿物等地质体中P2O5、U、Th、REE等的含量,并通过对比分析,了解各种地质体中这些组分的特征及变化规律,探讨成岩过程、蚀变过程及矿化过程中磷对U、Th、REE等组分富集的影响。其次,应用电子探针、扫描电镜等,对富大铀矿体内与铀相关的磷灰石的种类、赋存特征、结构形态及地球化学特征等进行大量测试,研究富大铀矿体中磷、铀等组成的矿物学特征及相互关系。最后,在前述研究的基础上,开展磷和U活化、磷灰石吸附铀沉淀两个方向的模拟实验,了解磷与U、Th、REE等元素的迁移规律,验证磷灰石可吸附U、REE等沉淀富集;再结合已有成矿温度、年代等方面的成果,分析相山铀矿成矿作用中磷对成矿的意义。取得以下成果:(1)各类背景围岩中P2O5的含量相差不大,但U、Th、REE含量相差较大。P2O5含量,变质岩中平均值0.13%,碎斑熔岩中平均值0.03%,花岗斑岩中平均值0.11%。P2O5含量在背景岩石中总体含量较低,且在变质岩与花岗斑岩中相近,略高于碎斑熔岩。U含量,变质岩中平均值2.7×10-6,碎斑熔岩中平均值8.46×10-6,花岗斑岩中平均值5.85×10-6,这几种背景围岩U含量有3倍左右的变化,且铀含量高低顺序为碎斑熔岩>花岗岩>变质岩。在变质岩重熔形成碎斑熔岩、花岗斑岩等演化过程中,U、Th、REE等明显富集,但P2O5含量变化不明显,由此推测相山矿田在成岩过程中从早到晚U、Th、REE等明显富集,P2O5无富集。(2)矿化过程中P2O5与U、Th、REE等元素呈非线性正相关关系。(1)在含矿剖面中,从未蚀变→近矿蚀变围岩→矿体中,P2O5与U、Th、REE等元素逐渐增加。(2)铀矿石中P2O5与U、Th、ΣREE、LREE、HREE等总体呈正相关关系,U含量越高,P2O5与这些元素正相关性越明显。特富矿石(铀品位高于1%)中,P2O5与Th、ΣREE、HREE等明显富集,为重稀土富集型,P2O5与U等元素总体呈显着正相关。(3)斑岩型和熔岩型矿床内P2O5与U、Th、ΣREE、LREE、HREE均呈非线性的正相关性,P2O5含量熔岩型矿床含量比斑岩型高,U含量也是如此。在相山矿田无论贫富铀矿石中,P2O5含量明显高于背景岩石,且与U、Th、REE正相关,是良好的铀矿化标志和找矿标志。(3)蚀变过程中P2O5与U、Th、REE同步增长,显示P2O5对这些成矿组分活化迁移有促进作用。相山矿田中,长石和云母等主要组成矿物蚀变过程电子探针成分分析显示,总体上,不同蚀变程度的长石P2O5与U、Th等元素呈非线性正相关关系;长石蚀变为绢云母蚀变为绿泥石过程中,U、Th含量增加,P2O5含量减少。不同蚀变程度的黑云母P2O5与U、Th等元素呈非线性正相关关系,稀土含量越高,相关性越明显;黑云母蚀变为绿泥石过程中,U、Th含量增加,P2O5含量减少。磷铀活化迁移实验表明,P2O5与U、Th、ΣREE、LREE、HREE在酸性条件下,从固态进入液相状态,且酸性越强进入液相状态的比例越高,叠加氧化条件后磷和铀进入液相状态的比例再次提高。以上蚀变过程及活化迁移实验结果都表明,在酸性热液环境中磷对U、Th、REE等从固态进入液相状态有积极作用,利于其活化迁移。(4)P2O5对相山矿田铀沉淀富集形成富大矿体有重要的意义,是相山铀矿田形成富大铀矿体不可或缺的因素。(1)相山矿田富大铀矿体中磷灰石主要为氟磷灰石,可大致分为自形-半自形磷灰石和它形两类。前者不含铀矿物,粒度一般较大,包裹体成群出现,均一温度集中在165~288℃,铀矿物主要成星点状或细脉状分布在其周围或裂隙中。后者表面较为粗糙,为微晶磷灰石堆积而成,包裹体小且少,均一温度233℃、373℃、383℃,一般磷灰石内有粒状或微小的星点状铀矿物。(2)磷灰石在酸性条件下可吸附铀,反应可自发进行,磷灰石吸附铀后无新的U与P的矿物相生成,铀呈非晶质态吸附在磷灰石表面,主要是化学吸附,同时伴有物理吸附。(3)结合前人关于相山存在早、晚两期成矿阶段的认识,P2O5在两期铀沉淀成矿阶段意义有一定的差异。早期成矿阶段(115±0.5)Ma,主要是在斑岩形成后期,形成的U矿石品位较低,P2O5活化酸性火山岩和斑岩中的铀等成矿元素,热液温度高,成矿温度约为310℃,与微晶磷灰石包裹体均一温度233℃、373℃、383℃相近,推测微晶磷灰石主要形成于早期成矿阶段。晚期成矿阶段(98±8)Ma,也是红盆形成阶段,主要受北东向断裂控制,热液主要来源于盆地脱水后的深大断裂增温的盆地水,磷能促进铀等成矿组分从固相进入热液活化迁移,受控盆断裂长期影响热液量大、作用时间长,成矿温度低,约为220℃上下,与中粗粒自形-半自形磷灰石包裹体均一温度165℃-288℃相近。推测中粗粒磷灰石主要形成于晚期阶段。两个成矿期次可以单独成矿,如云际矿床早期铀成矿作用特征较为明显,形成的矿石U品位低;也可两期叠加成矿,两期叠加成矿是相山矿田富大矿床形成的必要条件,如山南和邹家山矿床。创新性认识主要有:相山矿田铀矿化中P2O5含量与U、Th、REE总体正相关,P2O5是富大铀矿成矿和找矿的重要标志。热液环境中P2O5能促进U、Th、REE等从固相进入液相,在相山两期热液成矿阶段,P2O5对铀活化迁移都起重要的促进作用,而在变质岩重熔的成岩阶段这两者相关性不明显。相山铀矿成矿过程中磷灰石对铀的吸附沉淀,也是铀富集成矿的重要机制,在早晚两期成矿中,磷对铀的迁移、活化、沉淀都起了重要的促进作用。
白建科[6](2021)在《新疆东准噶尔地区石墨矿成因及成矿规律》文中研究表明近年来,我国新疆东准噶尔地区晶质石墨找矿取得重大突破,显示出良好的晶质石墨成矿潜力。然而,因发现时间晚,石墨矿床研究程度整体偏低,目前的研究工作仅限于单个矿床,缺乏对东准噶尔石墨矿床的系统性研究,这不但制约了对东准噶尔地区石墨矿成因及成矿规律的准确认识,而且直接影响该地区下一步晶质石墨找矿工作的勘查部署和大型石墨资源基地建设。本论文选择新疆东准噶尔地区典型石墨矿床,采用矿物学、岩石学、矿床学、同位素年代学、地球化学、碳同位素等方法,重点分析石墨矿床地质特征、成岩成矿时代、含矿岩系沉积环境、碳质来源、控矿因素等,在此基础上,进一步总结石墨矿床矿化、成因类型及成矿规律。东准噶尔地区已知石墨矿床均产于区域性大断裂的次级断裂褶皱带内,空间分布明显受控于NW-SE向展布的额尔齐斯-玛因鄂博等3条区域性构造岩浆岩带。孔可热、达布逊、散得克、吐尔库里等4个石墨矿矿体受脆-韧性剪切带控制作用明显,矿体发生塑性变形,矿化蚀变主要包括绢云母化、高岭土化及褐铁矿化,石墨呈细鳞片-显微鳞片状结构,片径0.001~0.2mm,固定碳含量11.56%~15.6%。黄羊山石墨矿体赋存于碱性花岗岩中,矿化蚀变为云英岩化和硅化-黑云母化,固定碳含量6.15%,晶质鳞片状和叶片状结构,片径0.05~0.2mm,最大可达0.5mm。通过典型石墨矿床锆石U-Pb年代学和岩石地球化学研究得出:孔可热、达布逊、散得克、吐尔库里等4个石墨矿含矿岩系沉积时代主要集中在早石炭世杜内期至晚石炭世巴什基尔期(336~321Ma),含矿岩系归属于下石炭统姜巴斯套组和上石炭统巴塔玛依内山组,原岩均为杂砂岩或长石砂岩,其物源总体为长英质源区,但构造背景较复杂。东准噶尔地区典型石墨矿床成矿时代集中于晚石炭世晚期(301~312Ma)。通过对典型石墨矿床开展碳同位素、X射线衍射、激光拉曼光谱、流体包裹体等分析测试,获得孔可热和吐尔库里石墨矿中石墨碳同位素δ13C平均值为-21.4‰,黄羊山和苏吉泉石墨矿中石墨碳同位素δ13C平均值为-20.4‰。东准噶尔地区典型石墨矿床石墨碳同位素δ13C值的一致性,不仅反映石墨的碳质来源均为有机成因,而且暗示石墨原岩建造形成于相似的沉积环境。典型石墨矿床具有相似的XRD衍射图谱,峰形尖锐,石墨d(002)介于3.353~3.356?之间,说明石墨矿物有序度较好。黄羊山石墨矿中石墨激光拉曼光谱表现出尖锐的G带,微弱的D1、D2缺陷峰,显示石墨结晶度较高。石墨晶体R2值介于0.02~0.14,计算得到形成温度为578~632℃。东准噶尔地区石墨矿床可划分为3种矿化类型:与蚀变钾长花岗岩有成因关系的石墨矿化类型;与岩浆期后气化热液有关的石墨矿化类型;炭质板岩-炭硅质板岩型石墨矿化类型。在此基础上,提出东准噶尔地区石墨矿床2种成因类型:构造岩浆热变质型和岩浆气液蚀变型,与前人划分方案不同,指导区域找矿可操作性更强。根据已发现典型石墨矿床成矿地质背景、控矿因素、矿床成因类型及时空分布特征,将东准噶尔地区石墨成矿有利区带划分出3个成矿亚带:额尔齐斯-玛因鄂博石墨成矿亚带(Ⅰ-1)、扎河坝-阿尔曼泰石墨成矿亚带(Ⅰ-2)和卡拉麦里-莫钦乌拉石墨成矿亚带(Ⅰ-3),为新疆东准噶尔地区下一步石墨找矿勘查工作部署提供依据。
汤谨晖[7](2020)在《粤东北仁差盆地铀多金属矿成矿地质特征与成矿预测》文中进行了进一步梳理仁差火山断陷盆地处于NE向武夷多金属成矿带西南端与EW向南岭成矿带东端这一独特的地质构造交汇部位。区内印支—燕山早期岩浆活动频繁,燕山晚期火山活动强烈,发育多组断裂构造。盆地具有优越的区域地质成矿条件,属国内重要的铀多金属矿聚集区之一。目前,在盆地中已发现多个U、Mo、Au、Ag等多金属矿床和一批矿化(点),成矿前景较好。以往盆地基础地质工作主要局限于几个已知矿床,矿床外围空白区较多,对许多基础地质问题未进行系统研究。另外,对盆地及邻区丰富的地质、物化探、遥感等地学信息,尚未利用现代矿产资源预测评价理论方法进行系统分析和综合评价,这成为制约盆地下一步找矿方向的拓展和找矿勘查突破的主要问题之一。本文全面系统地收集、整理与盆地有关的地质、物探、化探、遥感和矿产等资料,在借鉴和吸收前人研究成果基础上,结合野外地质调查和样品测试,在盆地成矿地质条件分析的基础上开展典型矿床研究,基本查明了矿床主要控矿因素;全面梳理了铀多金属矿空间分布规律,厘定了矿床成矿序列及矿床成因,建立了盆地成矿模式。利用地质、物探、化探、遥感等多源地学信息,提取成矿异常信息。根据找矿标志,构建矿床成矿预测地质模型。采用MORPAS评价系统数据知识的“经验模型法+成因模型法”的混合驱动形式,应用“找矿信息量法”对特征异常信息进行叠加分析,对各成矿单元开展成矿预测,圈定找矿靶区,并对各靶区分别进行了远景评价。具体研究过程中取得成果简述如下:(1)在古应力要素研究基础上,恢复了盆地自中生代印支期至古近纪始新世的构造—沉积—岩浆演化序列。同时根据对盆地及周边节理在不同地层单元产状和切割关系筛分,认为盆地主要存在四期共轭节理。第四期节理集中在晚白垩世至古近纪地层中,最大主应力轴轴向EW,呈现EW挤压及SN伸展的应力状态,盆地在该阶段以伸展断陷为主,与盆地铀主要成矿年龄阶段相对应。区内最关键控矿因素应为断裂构造,NNE向、NWW向、EW向断裂交汇复合部位因拉张作用形成的张裂区(带),是成矿流体最理想的存储空间(容矿构造),控制主要铀矿床(矿体)空间定位。(2)盆地次流纹斑岩岩石地球化学特征表现出硅、铝过饱和的高钾钙碱性系列和钾玄岩系列的流纹岩特征。岩浆源区可能来自壳源,次火山岩不是结晶分异作用的产物,上地壳岩石的部分熔融可能是其主要的形成机制,样品表现出来的结晶分异特征应是岩浆超浅层侵入过程中长英质矿物发生结晶的结果。对盆地基底文象花岗岩进行LA-ICP-MS锆石U-Pb同位素定年,首次测得两个谐和年龄分别为179±1Ma和186±1Ma,形成时代为早侏罗世晚期,即燕山第一幕岩浆活动之产物。测年成果加深了对仁差盆地构造—岩浆演化的认识,也为粤东北地区在早侏罗世缺乏岩浆岩活动的报道提供了新的年代学数据。(3)对典型矿床关键控矿因素及矿床成因进行剖析,认为:差干多金属矿床应属再造富集而成的沉积—火山热液复成因矿床,隐伏断裂构造控制了深部主要矿体的展布范围,改变了前人对成矿单一“层控”的地质认识;麻楼矿床应属浅成中低温热液型铀矿床,空间定位于次流纹斑岩内接蚀带边缘相(细斑次流纹斑岩)0~30m内,矿化分布在由挤压破碎产生的次级密集裂隙群带中;鹅石矿床应属沉积—火山热液复成因矿床,产于晚白垩世叶塘组上组上段顶部第三韵律(K32-Ⅲb)中的层凝灰岩、含砾凝灰岩中。盆地酸性火山岩应是铀物质来源的主体,另外因素是深部岩浆活动;成矿流体具有多来源特征,由大气降水和深源流体叠加作用而成。(4)通过锆石U-Pb同位素测年,认为盆地火山岩主要是晚白垩世早期(K2)火山活动的产物。铀矿样品206Pb/238U年龄结果表明,成矿时代由晚白垩世晚期一直延续到新近纪上新世,应是多期多阶段成矿。根据矿床成矿系列理论中“地质时代(旋回)—矿床成矿系列(组)—矿床成矿亚系列—矿床”的研究思路,厘定了盆地矿床的成矿系列,将盆地矿床归于晚三叠世—白垩纪(燕山旋回)下3个矿床成矿亚系列。并依据矿床控矿因素及地质作用环境差异,将盆地4个矿床划分成差干式、麻楼式2个找矿模式。(5)对多源地学信息进行异常提取,盆地内共圈定伽玛综合异常晕圈10个(U-1~U-10),Ⅰ级水化远景区8个(Ⅰ-1~Ⅰ-8);对水系沉积物测量19种元素的地化数据,采用聚类分析、因子分析原理,确定矿区地球化学特征元素组合,提取出Hg-Y-La组合、Bi-Sn-W-Be组合、Zn-Mo-Nb组合、Au-Pb组合、Cu-Zn组合综合异常;选用ETM+遥感影像7个高光谱波段对铁离子蚀变矿物、羟基蚀变矿物及硅化、中基性岩脉等异常信息分别进行识别提取。在上述地球物理、地球化学、遥感影像等信息提取基础上,编制了各类综合异常成果图件。(6)根据盆地成矿规律,结合多源地学信息提取结果,建立区内火山岩型铀矿床主要找矿判别标志。从成矿地质背景、构造与结构面关系、成矿特征等参数方面研究,建立盆地成矿预测地质模型。采用数据知识的“经验模型法+成因模型法”的混合驱动形式,利用MORPAS3.0的空间分析功能进行特征信息量叠加分析,并圈定了找矿靶区。区内共圈定5个A级找矿靶区(编号:A1~A5)、3个B级找矿靶区(编号:B1~B3),对各找矿靶区分别进行了远景评价。
方维萱,王磊,鲁佳,李天成,贾润幸[8](2020)在《新疆乌拉根中-新生代沉积盆地和前陆冲断褶皱带对铜铅锌-天青石-铀-煤成矿控制规律》文中提出塔西地区是我国典型盆山原镶嵌构造区,乌拉根中-新生代沉积盆地为铜铅锌-石膏-天青石-铀-煤-天然气同盆共存富集区。这种特色陆内成矿单元因复杂构造形成演化史,多矿种同盆共存富集成矿内在关系不明。在对塔西地区构造岩相学垂向相序结构研究基础上,经原型盆地恢复、盆地动力学、盆地形成演化与构造变形史等综合研究,将构造-岩石地层系统划分为元古宙中高级变质断块(下基底构造层)、晚古生代地层(上基底构造层),下三叠统、侏罗系、白垩系、古近系和新近系为盆地充填地层体,认为乌拉根中-新生代沉积盆地经历了早三叠世-早侏罗世山体隆升与山前断陷山盆转换、早-中侏罗世主成盆期、中-晚侏罗世构造反转期、白垩纪-古近纪挤压-伸展转换主成盆期、新近纪陆内周缘山间盆地等五个主要期次。其中早侏罗世康苏期和中侏罗世杨叶期为聚煤期,形成了半环状煤矿带和煤系烃源岩。燕山早期(J2-3)和燕山晚期(K1-E1a)两次前陆冲断作用导致盆地发生构造反转,构造沉降-沉积中心从NW向转为近EW向。白垩纪-古近纪挤压-伸展转换成为主成盆期,盆地动力学为受同生断裂带控制。挤压走滑抬升隆起形成乌拉根半岛;走滑拉分断陷的构造扩容空间形成了乌拉根局限海湾泻湖盆地,为克孜勒苏群和古近系提供了沉积容纳空间。阿尔塔什组底部热卤水沉积交代-改造型天青石矿床和石膏矿床形成于古近纪初。石膏岩-含膏泥岩-含膏泥质白云岩不但为区域滑脱构造面,也是阿克莫木天然气田良好的盖层。始新世伊普里斯阶-普利亚本阶(55.8~33.9Ma)为铅锌-铀-天然气成藏成矿高峰期,与喜山早期三幕区域挤压构造环境和相关海退过程有显着的时间-空间耦合关系。中新世阿启坦阶-布尔迪加尔阶(23.03~15.97 Ma)形成天然气充注成藏事件。安居安组砂岩型铜矿床与该期天然气充注和西南天山隆升事件关系密切,主要与喜山中期区域挤压应力场、干旱气候环境下,在物质-时间-空间上耦合关系显着。综合研究认为,我国塔西盆山原耦合与转换的特色陆内成矿单元内,铜铅锌、石膏、天青石、煤、铀等矿床储矿层位和天然气田储集层形成于中-新生代陆内走滑拉分断陷成盆动力学背景下。铅锌-铀-天然气成藏成矿高峰期与喜山期多幕次的陆内挤压收缩体制关系密切。挤压应力场驱动了煤系烃源岩发生生排烃事件、成矿流体大规模运移和聚集。冲断褶皱带和向斜构造为圈闭构造。帕米尔北缘南倾北向冲断褶皱岩片与西南天山南缘北倾南向冲断褶皱岩片组成了对称型薄皮式冲断褶皱带。南天山深部盲冲型冲断带为叠瓦状后展式基底卷入型前陆冲断带。
章展铭[9](2020)在《内蒙古通辽地区流体作用与铀成矿关系研究》文中提出松辽盆地是我国北方主要的产铀盆地之一,盆地西南部的通辽地区现已探明钱家店、宝龙山等大型铀矿床。近年来,通辽地区经铀矿勘查新发现了大林、海力锦等矿床,表明区内仍有很大的成矿前景。然而,对于区内流体作用与铀成矿的研究相对薄弱。论文以松辽盆地西南部通辽地区宝龙山、大林砂岩型铀矿床为研究对象,以岩石学、矿物学、地球化学以及砂岩型铀成矿理论为指导,研究了铀矿床地质特征,分析了目的层姚家组砂岩的后生蚀变特征、成矿流体类型及其与铀成矿的关系。取得如下主要成果:(1)研究认为目的层姚家组砂岩中与铀矿化相关的蚀变主要有高岭石化、黄铁矿化及碳酸盐化。高岭石常常吸附铀,充填在砂岩孔隙,以杂基的形式存在。黄铁矿一方面表现为草莓状黄铁矿交代有机质且与铀矿物共生,另一方面以胶状黄铁矿与铁白云石、铀矿物共生的形式存在。含铀碳酸盐以铁白云石为主,常以自形-半自形产出,铀矿物赋存在其表面。(2)根据蚀变矿物的产出形式与同位素地球化学特征,分析不同蚀变矿物的成因。其中,高岭石成因复杂,既可以是大气降水淋滤或成岩有机酸流体的产物,也可以是在辉绿岩脱气产生的富CO2热流体充注作用下形成;黄铁矿根据其形态可分为草莓状黄铁矿与包裹草莓状黄铁矿的胶状黄铁矿,前者为具有强亏损δ34S特征的生物成因,后者因富集δ34S系热流体活动的产物;碳酸盐化存在三期,依次是沉积成岩阶段形成的原生亮晶方解石、辉绿岩脱气作用产生的富CO2流体充注姚家组砂岩形成的方解石脉与片钠铝石、热流体与地下水混合形成的铁白云石。(3)结合宏观砂岩特征与微观的镜下观察,认为研究区存在地下水、辉绿岩脱气产生的富CO2热流体以及油气还原性流体。地下水的活动贯穿姚家组形成至铀富集成矿的整个阶段;富CO2的热流体形成于嫩江期末强烈的区域构造-岩浆活动时期,是基性岩浆活动脱气作用的产物;油气还原性流体除了由原生炭屑有机质控制的有机酸外,还由深部油气组成,伴随着持续性的构造抬升活动,能沿着断裂运移至姚家组,提升还原容量。(4)运用流体包裹体分析手段,研究认为区内铀矿床成矿流体具有中-低温、盐度低及多种流体叠加的特征。姚家组于构造反转期受到辉绿岩脱气产生富CO2热流体的改造,具有较高温(198~223℃)、低盐度(0.71~4.34 wt%Na Cleq)的特征。随着含铀含氧地下水的逐步混入,成矿流体演化为中等温度(155~232℃)、较高盐度(4.18~9.98 wt%Na Cleq)的特征。最终,由于热流体活动的间歇,成矿流体以地下水占主导地位,表现为低温(83~145℃)、低盐度(0.88~6.45 wt%Na Cleq)的特征。(5)认为宝龙山-大林铀矿带含矿目的层砂岩主要经历沉积成岩阶段、富CO2流体充注阶段以及成矿阶段,地球化学环境的演化过程依次为弱碱→弱酸→碱性-过碱性→弱碱性→弱酸性-中性过渡,此过程对蚀变矿物的形成与铀的迁移富集起到重要的控制作用。根据蚀变矿物组合及流体作用,将铀成矿过程划分为沉积预富集、构造反转及热流体改造、层间氧化成矿等三个阶段。
陈旭[10](2020)在《诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究》文中进行了进一步梳理诸广山复式岩体位于华南铀成矿省的桃山-诸广铀成矿带,是中国重要的花岗岩型铀矿矿集区之一。三九地区位于诸广中段,处于鹿井、城口铀矿田之间,该地区近十年来的找矿工作取得不少突破,其铀资源量已提升至矿田级别。前人已在三九矿田开展了大量工作,并取得了丰硕工作成果。然而,相比诸广岩体南部,三九矿田的富铀老地层、产铀花岗岩体、铀矿物和主要共伴生矿物、常见矿化指示标志、矿床形成时代、成矿流体性质等重要矿床学内容缺乏系统研究,制约了对区内花岗岩型铀矿床成矿地质特征的深入认识。本文以湘东南诸广中段三九铀矿田部分铀矿床(点)为研究对象,在前人工作及研究基础上,对区内铀矿床(点)铀矿化特征进行了总结。采用SEM、EMPA、LA-ICP-MS、Helix SFT等多种高精度观察和/或分析技术,开展了多种岩矿的主微量元素和同位素地球化学、矿物学、原位微区定年、流体包裹体显微观测等研究。对铀源地层和花岗岩体、主要铀矿物和共伴生矿物、成矿年龄、成矿流体等内容开展了研究和探讨,涉及岩石矿物主微量元素地球化学组成、成矿期次、成矿流体性质和演化,并尝试完善花岗岩型铀矿床成矿模式,探讨了研究区铀资源勘查的发展方向。本文取得的主要新认识如下:(1)三九铀矿田区域上具有优越的构造-岩浆-热液活动等有利的成矿地质条件,区内具有良好的铀多金属矿成矿和找矿潜力。区内热液铀矿床在横向上主要定位于NE向、(近)SN向、NW向等次级断裂等构造,纵向控矿标高大致定位于-330~1 160m,区内成矿深度和剥蚀深度相对较浅,深部仍有较大找矿潜力。铀矿体常以脉状、网脉状、透镜状产出,矿石主要为硅质脉型、蚀变碎裂岩型、构造角砾岩型三类,矿石矿物以沥青铀矿为主,地表及浅部广泛发育多种次生铀矿物。岩体与地层接触带、岩体与岩体接触面、岩体内部导控矿构造等各种地质体界面,热液蚀变叠加区、物化探异常叠合区等是重要成矿和找矿部位;(2)区内花岗岩型铀矿床的矿源主要为富铀的震旦-寒武系地层和燕山早期花岗岩体。区内成矿流体为多期次壳幔流体混合成因,经历了长期的深部热循环、壳源流体再混合,整体具有低盐度、低幔源组分特征。成矿流体主要在180~220℃的温度区间、0.86~0.94g/cm3的密度区间、16~20MPa的压力区间等条件下成矿。至成矿期后期,成矿流体的幔源组分逐渐降低,转化为壳源流体占主导地位的混合流体。成矿流体还原性整体较为稳定,有利于矿质的长期迁移、卸载、富集和矿体的稳定保存;(3)三江口岩体等主要产铀花岗岩体属高分异S型花岗岩,与华南众多产铀岩体具有相同或相似的地物化特征,如矿物学特征、岩浆结晶温度、氧逸度等。华南花岗质岩体的产铀性与其侵位深度、剥蚀深度、成矿温度无关,而主要决定于岩体成岩特征;(4)区内与铀矿化关系密切或能有效指示铀矿化的常见矿物包括:高REE含量的暗红色或杂色微晶质石英、较高Fe含量的蠕绿泥石、较高REE含量且较亏S的胶状黄铁矿、高Fe3+/Fe2+比值且较富LREE的赤铁矿、胶状他形和/或细粒自形黄铁矿与他形赤铁矿的矿物组合、LREE含量偏低的紫黑色萤石等;(5)区内主要矿石矿物为鲕粒状、不规则细脉状产出的沥青铀矿。EMPA与LA-ICP-MS原位微区定年显示,区内矿床可能始于~140Ma形成,并存在15~25Ma、35~45Ma、55~65Ma、95~105Ma等4个主要成矿期次,其中55~65Ma、95~105Ma的成矿期对应了华南中新生代伸展构造背景下的成矿高峰期,35~45Ma、15~25Ma的成矿期对应了后期的改造成矿;(6)岩石矿物的地球化学研究显示,区内花岗岩型铀矿床成矿过程复杂。以三九铀矿田为例,本文认为华南花岗岩型铀成矿作用具有多期次成矿改造特征。
二、中国东南部火山岩型铀矿床碳同位素组成和∑CO_2来源研究(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、中国东南部火山岩型铀矿床碳同位素组成和∑CO_2来源研究(论文提纲范文)
(1)诸广南长江地区花岗岩型铀矿成矿流体作用研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题依据、目的及意义 |
1.1.1 选题依据 |
1.1.2 选题目的 |
1.1.3 选题意义 |
1.2 研究现状及存在的问题 |
1.2.1 国内外铀矿床流体作用研究现状 |
1.2.2 长江地区铀矿床研究现状 |
1.2.3 存在的问题 |
1.3 研究的内容方法和技术路线 |
1.3.1 研究的内容 |
1.3.2 研究的方法及技术路线 |
1.4 主要完成工作量 |
1.5 论文主要创新成果 |
2 区域地质概况 |
2.1 区域地层 |
2.2 区域岩浆岩 |
2.3 区域构造 |
2.3.1 区域构造发展史 |
2.3.2 长江地区构造特征 |
3 典型矿床地质 |
3.1 棉花坑矿床 |
3.1.1 矿区地质特征 |
3.1.2 矿体特征和矿石组构 |
3.1.3 围岩蚀变 |
3.2 书楼丘矿床 |
3.2.1 矿区地质特征 |
3.2.2 矿体特征和矿石组构 |
3.2.3 围岩蚀变 |
3.3 油洞地区铀矿床矿床地质 |
3.3.1 油洞铀矿床矿区地质特征 |
3.3.2 油洞矿床矿体特征和矿石组构 |
3.3.3 长排地区铀矿床矿床地质特征 |
3.3.4 长排地区矿体特征和矿石组构 |
3.3.5 长排地区的围岩蚀变特征 |
3.4 水石矿床 |
3.4.1 矿区地质特征 |
3.4.2 矿体特征和矿石组构 |
3.4.3 蚀变特征 |
3.5 “长江1 号”钻探成果和论文采样情况 |
3.5.1 “长江1 号”钻探成果 |
3.5.2 论文采样情况 |
4 成矿流体组成与性质 |
4.1 蚀变分带和成矿阶段 |
4.1.1 蚀变分带 |
4.1.2 成矿期次和成矿阶段 |
4.2 流体包裹体特征研究 |
4.2.1 样品特征及试验方法 |
4.2.2 棉花坑矿床的流体包裹体特征 |
4.2.3 书楼丘矿床的流体包裹体特征 |
4.2.4 长排地区铀矿床的流体包裹体特征 |
4.2.5 水石矿床的流体包裹体特征 |
4.3 流体包裹体特征与成矿流体 |
4.3.1 成矿流体的温度盐度和压力 |
4.3.2 流体包裹体特征与成矿流体的演化 |
4.4 蚀变岩石和矿石的化学成分与成矿流体作用 |
4.4.1 样品特征和测试方法 |
4.4.2 元素质量平衡的计算 |
4.4.3 铀矿化蚀变岩石元素地球化学特征 |
4.4.4 元素地球化学活动性规律和意义 |
4.5 小结 |
5 成矿流体的来源 |
5.1 H-O同位素特征 |
5.1.1 分析样品及分析方法 |
5.1.2 H-O同位素特征 |
5.1.3 H-O同位素演化特征 |
5.2 C-O同位素特征 |
5.2.1 分析样品及分析方法 |
5.2.2 C-O同位素特征 |
5.2.3 C-O同位素演化特征 |
5.3 其他同位素特征 |
5.3.1 脉石矿物的Rb、Sr同位素特征 |
5.3.2 稀有气体同位素研究 |
5.4 热液蚀变伊利石的H-O同位素特征 |
5.4.1 样品特征和分析方法 |
5.4.2 伊利石X射线粉晶衍射特征和H-O同位素特征 |
5.4.3 伊利石H-O同位素分析 |
5.5 成矿流体演化与成矿作用 |
5.5.1 成矿流体演化 |
5.5.2 成矿流体演化与成矿作用 |
5.6 小结 |
6 铀成矿作用与成矿模式 |
6.1 成矿流体演化特征和铀成矿关系 |
6.2 铀成矿模式 |
7 结论 |
参考文献 |
致谢 |
附录 |
(2)新疆大长沟盆地下侏罗统八道湾组含油页岩系精细分析及古环境重建(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 选题依据及意义 |
1.2 国内外研究现状 |
1.3 研究内容和技术路线 |
1.4 主要完成工作量 |
1.5 论文主要创新点 |
第2章 地质概况 |
2.1 构造特征 |
2.2 地层特征及对比 |
第3章 沉积及层序地层特征 |
3.1 沉积相分析 |
3.2 层序地层分析 |
3.3 层序地层格架内沉积相的展布 |
3.4 本章小结 |
第4章 含油页岩系富有机质岩特征分析 |
4.1 样品选取 |
4.2 研究手段与实验方法 |
4.3 富有机质岩特征 |
4.4 本章小结 |
第5章 含油页岩系古环境重建及有机质富集机制 |
5.1 层序地层格架内的古环境演化 |
5.2 含油页岩系有机质富集环境要素 |
5.3 油页岩与湖相烛藻煤成因机制 |
5.4 本章小节 |
第6章 古大气CO_2浓度重建及古环境意义 |
6.1 有机碳同位素对大气CO_2浓度变化的响应机理 |
6.2 有机碳同位素重建古大气CO_2可行性分析 |
6.3 C_3植物碳同位素计算古大气CO_2浓度 |
6.4 碳同位素偏移的古环境意义 |
6.5 本章小结 |
结论 |
参考文献 |
作者简介及攻读博士期间发表的论文 |
致谢 |
(3)我国铀矿地质科技近十年的主要进展全文替换(论文提纲范文)
0 引言 |
1 铀矿成矿理论创新 |
1.1 叠合复成因砂岩铀成矿 |
(1)铀源的叠合。 |
(2)铀成矿流体的叠合。 |
(3)铀成矿作用的叠合。 |
1.2 构造活动带砂岩铀成矿 |
1.3 热点深源热液铀成矿 |
2 铀矿地质研究、科学深钻及成矿预测进展 |
2.1 铀成矿类型和成矿区带新划分 |
2.2 全国铀矿资源潜力评价 |
2.3 铀矿地质基础研究创新 |
2.4 中国铀矿科学深钻(CUSD1) |
(1)重建相山盆地火山机构。 |
(2)建立标型剖面和深部勘查技术方法体系。 |
(3)铀多金属矿化发现及其成矿地质特征。 |
2.5 零价态金属铀的发现 |
2.6 新矿物的发现 |
(1)冕宁铀矿(mianningite, IMA 2014-072)。 |
(2)羟铅烧绿石(hydroxyplumbopyrochlore, IMA2018-145)。 |
(3)氧钠细晶石(oxynatromicrolite, IMA 2013-063)。 |
(4)栾锂云母(luanshiweiite, IMA2011-102)。 |
3 铀矿勘查技术创新 |
3.1 砂岩型铀矿快速评价技术 |
3.2 热液型铀矿攻深找盲技术 |
(1)深部盲矿地质评价技术体系。 |
(2)深部探测地球物理技术体系。 |
(3)深穿透地球化学技术体系。 |
(4)遥感影像特征纹理分形分析和亮温识别技术体系。 |
3.3 大数据找矿技术方法 |
(1)铀资源数据构建和存储管理。 |
(2)数据分析和各类信息提取。 |
(3)机器学习与智能找矿。 |
3.4 遥感高光谱技术 |
3.5 钻探工艺新技术 |
(1)研制成功高效耐久钻头。 |
(2)研发的交流变频电动顶驱式XD-35DB型地质岩心钻机,为国内外首台,具有国际领先水平。 |
(3)成功研制出P、H、N三种口径的复合式液动冲击器。 |
(4)成功研制出了适用于地浸砂岩铀矿卵砾石层钻进的胎体增强型孕镶金刚石钻头。 |
3.6 分析测试新技术新方法 |
(1)二次离子质谱分析技术。 |
(2)聚焦离子束扫描电子显微镜和飞行时间二次离子质谱联用技术。 |
(3)基于X射线计算机断层扫描(X-CT)的岩心三维扫描及铀矿物识别技术。 |
(4)激光烧蚀电感耦合等离子体质谱含铀矿物分析技术。 |
(5)基于单晶衍射仪建立了单晶晶体结构解析技术。 |
(6)分布式实验室检测技术。 |
4 重大找矿进展 |
5 展望 |
(1)大力加强铀资源重大基础前沿创新研究。 |
(2)大力发展砂岩型铀矿绿色智能勘查技术。 |
(3)大力发展热液型铀矿绿色智能化探测技术。 |
(4)发展放射性共伴生资源高效预测评价技术。 |
(5)持续推进铀矿科学深钻工程。 |
(4)相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景(论文提纲范文)
摘要 |
abstract |
1 引言 |
1.1 研究目的与意义 |
1.2 国内外研究现状 |
1.2.1 地球物理方法在岩浆通道系统研究中的应用进展 |
1.2.2 相山火山盆地岩浆通道系统研究现状 |
1.2.3 相山火山盆地铀成矿作用研究现状 |
1.3 研究思路及论文结构 |
1.4 论文主要创新点 |
2 相山火山盆地地质背景及地球物理特征 |
2.1 区域地质背景 |
2.1.1 地层 |
2.1.2 岩浆岩 |
2.1.3 构造 |
2.1.4 矿产 |
2.2 地球物理特征 |
2.2.1 岩石物性特征 |
2.2.2 区域重力场特征 |
2.2.3 区域磁场特征 |
2.2.4 区域航空放射性异常 |
2.3 本章小结 |
3 起伏地形下大地电磁L-BFGS三维反演 |
3.1 基于L-BFGS的大地电磁三维反演 |
3.1.1 目标函数构建 |
3.1.2 大地电磁L-BFGS反演 |
3.1.3 模型协方差 |
3.1.4 算法流程 |
3.2 反演算法适用性分析 |
3.2.1 带山峰地形的单个异常体模型 |
3.2.2 峰-谷组合地形下“棋盘”模型 |
3.3 观测数据影响研究 |
3.4 反演参数影响分析 |
3.4.1 初始模型的影响 |
3.4.2 网格剖分的影响 |
3.4.3 模型协方差的影响 |
3.5 本章小结 |
4 相山火山盆地大地电磁测深数据处理与分析 |
4.1 数据来源与处理 |
4.2 有效探测深度分析 |
4.3 相位张量分析 |
4.4 感应矢量分析 |
4.5 本章小结 |
5 相山火山盆地大地电磁测深数据三维反演 |
5.1 不同反演算法对比分析 |
5.2 实测数据三维反演试算 |
5.2.1 不同初始模型电阻率 |
5.2.2 不同模型协方差 |
5.2.3 不同网格剖分 |
5.2.4 不同反演分量 |
5.3 三维反演结果 |
5.3.1 典型剖面电性结构特征 |
5.3.2 平面电性结构特征 |
5.4 主要电性特征不确定性分析 |
5.5 本章小结 |
6 相山火山盆地岩浆侵位机制与铀成矿作用研究 |
6.1 岩浆通道系统的三维结构 |
6.2 岩浆上升和侵位过程及其动力学意义 |
6.3 构造-岩浆演化与铀成矿作用 |
6.3.1 构造体系及其控矿特征 |
6.3.2 岩浆演化对铀成矿的制约 |
6.4 本章小结 |
7 结论与建议 |
7.1 主要结论和认识 |
7.2 下一步工作展望 |
致谢 |
作者简介及在学期间主要科研成果 |
参考文献 |
(5)相山铀矿田磷的地球化学特征及其铀成矿意义(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题依据和研究意义 |
1.1.1 选题依据 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.3 研究内容及技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究方法和技术路线 |
1.3.3 实物工作量 |
1.4 创新点 |
2 区域地质与矿床地质 |
2.1 地层 |
2.2 岩浆岩 |
2.3 构造 |
2.4 相山铀矿化特征 |
3 相山矿田各类背景围岩中P与 U、Th、REE等特征及相关性 |
3.1 变质岩中P与 U、Th、REE等特征及相关性 |
3.2 熔岩中P与 U、Th、REE等特征及相关性 |
3.3 斑岩中P与 U、Th、REE等相关性 |
3.4 不同背景围岩中P与 U、Th、REE等含量和相关性比较和启示 |
3.5 小结 |
4 典型矿床矿石中P与 U、Th、REE等特征及相关性 |
4.1 熔岩型矿体剖面中P与 U、Th、REE等特征及相关性 |
4.1.1 邹家山矿床矿化剖面磷与成矿元素的特征及相关性 |
4.1.2 云际矿床矿化剖面磷与成矿元素的特征及相关性 |
4.2 熔岩型矿床矿石中P与 U、Th、REE等特征及相关性 |
4.2.1 邹家山矿床不同品位铀矿石中磷与成矿元素的特征及相关性 |
4.2.2 云际矿床不同品位铀矿石中磷与成矿元素的特征及相关性 |
4.2.3 王家边勘查区不同品位铀矿石中磷与成矿元素的特征及相关性 |
4.3 斑岩型矿体剖面中P与 U、Th、REE等特征及相关性 |
4.3.1 山南矿区矿化剖面磷与成矿元素的特征及相关性 |
4.3.2 沙洲矿床矿化剖面磷与成矿元素的特征及相关性 |
4.4 斑岩型矿石中P与 U、Th、REE等特征及相关性 |
4.4.1 山南矿区不同品位铀矿石中磷与成矿元素的特征及相关性 |
4.4.2 沙洲矿床不同品位铀矿石中磷与成矿元素的特征及相关性 |
4.5 小结 |
5 主要矿物蚀变过程P与U、REE等元素变化特征 |
5.1 概述 |
5.2 长石蚀变P与 U、Th、REE等特征及相关性 |
5.2.1 蚀变长石岩相学特征 |
5.2.2 取样和测试方法 |
5.2.3 蚀变长石微区成分及磷与成矿元素特征 |
5.2.4 长石蚀变的绢云母微区成分及磷与成矿元素特征 |
5.3 云母蚀变P与 U、Th、REE等特征及相关性 |
5.3.1 蚀变黑云母微区成分及磷与成矿元素特征 |
5.3.2 黑云母蚀变的绿泥石微区成分及磷与成矿元素特征 |
5.4 小结 |
6 磷灰石特征及对U成矿的意义 |
6.1 相山矿田磷灰石及其相关组成的特征 |
6.1.1 磷灰石组分特征 |
6.1.2 磷灰石类型 |
6.2 磷灰石对铀活化、迁移和沉淀成矿的实验研究 |
6.2.1 不同矿石浸泡过程P与 U、Th、REE等迁移特征 |
6.2.2 磷灰石吸附U成矿实验模拟 |
6.2.3 磷灰石包裹体测试及挥发分 |
6.3 磷灰石对U成矿的意义讨论 |
7 结论 |
致谢 |
攻读博士学位期间取得的科研成果 |
参考文献 |
(6)新疆东准噶尔地区石墨矿成因及成矿规律(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题依据及意义 |
1.2 研究现状与存在问题 |
1.2.1 石墨矿床类型 |
1.2.2 石墨矿床碳源属性 |
1.2.3 石墨矿成矿机理 |
1.2.4 存在问题 |
1.3 研究内容与技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.4 完成工作量 |
1.5 主要创新点 |
第二章 区域地质背景 |
2.1 区域地层 |
2.1.1 早古生代地层 |
2.1.2 晚古生代地层 |
2.1.3 中生代地层 |
2.1.4 新生代地层 |
2.2 区域岩浆岩 |
2.3 区域地球物理场 |
2.3.1 区域重力特征 |
2.3.2 区域航磁特征 |
2.4 区域深大断裂 |
2.5 区域构造演化与成矿 |
第三章 典型石墨矿床特征 |
3.1 孔可热石墨矿 |
3.1.1 矿区地质 |
3.1.2 矿体特征 |
3.1.3 矿石特征 |
3.1.4 赋矿岩石地球化学特征 |
3.2 达布逊石墨矿 |
3.2.1 矿区地质 |
3.2.2 矿体特征 |
3.2.3 矿石特征 |
3.2.4 赋矿岩石地球化学特征 |
3.3 散得克石墨矿 |
3.3.1 矿区地质 |
3.3.2 矿体特征 |
3.3.3 矿石特征 |
3.3.4 赋矿岩石地球化学特征 |
3.4 吐尔库里石墨矿 |
3.4.1 矿区地质 |
3.4.2 矿体特征 |
3.4.3 矿石特征 |
3.4.4 赋矿岩石地球化学特征 |
3.5 黄羊山石墨矿 |
3.5.1 矿区地质 |
3.5.2 矿体特征 |
3.5.3 矿石特征 |
3.5.4 赋矿岩石地球化学特征 |
3.6 小结 |
第四章 典型石墨矿床年代学 |
4.1 样品采集与测试方法 |
4.1.1 样品采集 |
4.1.2 测试方法 |
4.2 孔可热石墨矿年代学 |
4.3 达布逊石墨矿年代学 |
4.4 散得克石墨矿年代学 |
4.5 吐尔库里石墨矿年代学 |
4.6 黄羊山石墨矿年代学 |
4.7 小结 |
第五章 石墨矿床成因及成矿模式 |
5.1 成矿物质来源 |
5.1.1 主要碳库及其同位素特征 |
5.1.2 石墨矿床碳同位素特征 |
5.2 石墨结晶度 |
5.2.1 X射线衍射分析 |
5.2.2 拉曼光谱分析 |
5.3 黄羊山石墨矿石可选性评价 |
5.3.1 样品采集与实验方法 |
5.3.2 实验结果及可选性评价 |
5.4 石墨矿床类型 |
5.4.1 矿化类型 |
5.4.2 矿床类型 |
5.5 成矿机制 |
5.5.1 构造岩浆热变质型石墨矿 |
5.5.2 岩浆气液蚀变型石墨矿 |
5.6 小结 |
第六章 石墨矿床成矿规律 |
6.1 控矿因素 |
6.2 成矿时代 |
6.3 分布规律 |
6.4 小结 |
主要认识和结论 |
参考文献 |
致谢 |
攻读博士学位期间取得的科研成果 |
作者简介 |
数据附表 |
(7)粤东北仁差盆地铀多金属矿成矿地质特征与成矿预测(论文提纲范文)
摘要 |
abstract |
1 引言 |
1.1 选题背景与意义 |
1.2 成矿规律与矿产预测研究现状 |
1.2.1 国内外研究现状 |
1.2.2 研究区研究现状 |
1.2.3 存在的问题 |
1.3 研究内容与研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 主要工作量 |
1.5 论文的创新点 |
2 区域成矿地质背景 |
2.1 区域地质概况 |
2.2 区域地质特征 |
2.2.1 区域地层 |
2.2.2 区域构造 |
2.2.3 区域岩浆岩 |
2.2.4 区域地质演化 |
2.3 区域地球物理特征 |
2.3.1 航空伽玛场特征 |
2.3.2 重力场、磁场特征 |
2.4 区域地球化学特征 |
2.4.1 铀、氡地球化学特征 |
2.4.2 多金属地球化学特征 |
2.5 区域遥感特征 |
2.6 区域矿产特征 |
3 研究区铀多金属成矿地质条件 |
3.1 地层 |
3.1.1 寒武系(?) |
3.1.2 泥盆—石炭系(D_(2+3)—C_1) |
3.1.3 白垩系上统(K_2) |
3.1.4 古近系(E) |
3.1.5 第四系(Q) |
3.2 构造 |
3.2.1 褶皱 |
3.2.2 断裂构造 |
3.2.3 火山构造 |
3.3 岩浆岩 |
3.3.1 侵入岩 |
3.3.2 火山岩 |
3.3.3 次火山岩 |
3.4 变质岩 |
3.4.1 区域变质岩 |
3.4.2 动力变质岩 |
3.5 仁差盆地形成演化及与铀多金属成矿关系 |
3.5.1 盆地形成演化特征 |
3.5.2 盆地形成演化与成矿关系 |
4 典型矿床地质特征与控矿因素 |
4.1 差干多金属矿床 |
4.1.1 矿床地质特征 |
4.1.2 矿体地质 |
4.1.3 矿石物质成分及围岩蚀变 |
4.1.4 控矿因素分析 |
4.2 麻楼矿床 |
4.2.1 矿床地质特征 |
4.2.2 矿体地质 |
4.2.3 矿石物质成分及围岩蚀变 |
4.2.4 控矿因素分析 |
4.3 鹅石矿床 |
4.3.1 矿床地质特征 |
4.3.2 矿体地质 |
4.3.3 矿石物质成分及围岩蚀变 |
4.3.4 控矿因素分析 |
5 铀多金属矿床成矿规律与成矿模式 |
5.1 铀多金属矿床时空分布规律 |
5.1.1 成矿空间分布规律 |
5.1.2 成岩成矿时间分布规律 |
5.1.3 矿床成矿系列厘定 |
5.2 成矿要素 |
5.3 成矿过程与成矿模式 |
5.3.1 成矿物质来源 |
5.3.2 成矿流体来源 |
5.3.3 铀的迁移与沉淀 |
5.3.4 成矿模式 |
6 多源地学信息提取 |
6.1 地球物理特征及信息提取 |
6.1.1 放射性伽玛场特征 |
6.1.2 异常信息提取 |
6.2 地球化学特征及信息提取 |
6.2.1 非铀元素地球化学特征及信息提取 |
6.2.2 放射性水化学特征及信息提取 |
6.3 遥感蚀变信息提取 |
6.3.1 遥感图像数据预处理 |
6.3.2 地质构造遥感解译 |
6.3.3 遥感蚀变信息提取 |
6.3.4 遥感硅化信息提取 |
6.3.5 多源地学信息优化组合 |
7 铀多金属矿床成矿预测与远景评价 |
7.1 成矿潜力分析 |
7.1.1 区域成矿潜力分析 |
7.1.2 主要矿床成矿潜力分析 |
7.2 地质模型建立 |
7.2.1 找矿标志 |
7.2.2 成矿预测地质模型 |
7.3 综合信息数据库建立 |
7.4 矿产资源预测方法选择 |
7.5 预测模型地质单元划分 |
7.6 预测模型的变量选取及赋值 |
7.6.1 模型变量选取的原则、特点及方法 |
7.6.2 区域成矿特征变量的选取及赋值 |
7.6.3 综合信息分析 |
7.7 找矿靶区圈定及远景评价 |
7.7.1 找矿靶区圈定原则 |
7.7.2 找矿靶区圈定及评价 |
8 结论 |
致谢 |
攻读博士学位期间取得科研成果 |
参考文献 |
(8)新疆乌拉根中-新生代沉积盆地和前陆冲断褶皱带对铜铅锌-天青石-铀-煤成矿控制规律(论文提纲范文)
0 引言 |
1 乌拉根沉积盆地构造岩相学序列与盆地构造演化 |
1.1 乌拉根沉积盆地现今结构与金属矿产?煤矿?铀?天然气同盆富集成矿特征 |
1.2 盆地基底构造层特征与构造演化 |
1.2.1 下基底构造层:元古宙中高级变质断块 |
1.2.2 上基底构造层:晚古生代地层的构造岩相学与构造演化 |
1.3 乌拉根地区中生代构造岩相学序列与盆地演化 |
1.3.1 早三叠世山前断陷构造?沉积体系与山→盆耦合转换期 |
1.3.2 早?中侏罗世山→盆转换期构造沉积体系与聚煤成盆期 |
1.3.3 白垩纪陆内局限海湾盆地沉积体系与铅锌?铀?天然气储集层 |
1.4 古近纪陆内海湾泻湖构造岩相学序列与盆山原耦合转换记录 |
1.5 新近纪陆内周缘山间盆地沉积体系与盆山原耦合期 |
2 盆地演化序列与铜铅锌?天青石?铀?煤?天然气成矿成藏规律 |
2.1 原型盆地、盆地演化序列与同生构造组合 |
2.2 前陆隆起带和盆中隆起带:盆地分割和围限构造 |
2.3 康苏?岳普湖半环状前陆断坪沉降带:侏罗纪聚煤同生构造带与前陆冲断褶皱带 |
2.3.1 康苏?岳普湖半环状前陆断坪沉降带与半环状聚煤同生构造带 |
2.3.2 中?晚侏罗世前陆冲断褶皱作用与盆地沉积中心迁移 |
2.4 角度不整合面构造、同生断裂带和乌拉根局限海湾泻湖盆地 |
2.4.1 燕山晚期前陆冲断褶皱作用与角度不整合面构造 |
2.4.2 乌恰?乌拉根?吾合沙鲁同生断裂带 |
2.4.3 乌拉根局限海湾泻湖盆地与砂砾岩型铜铅锌?天青石矿床 |
3 前陆冲断褶皱带特征与成藏成矿流体大规模运移 |
3.1 区域构造单元分带 |
3.2 康苏?乌鲁克恰提后展式厚皮型前陆冲断构造带 |
3.3 康苏?岳普湖燕山期前陆冲断褶皱带与煤层聚集改造 |
3.4 乌拉根?吾合沙鲁前展式南向北倾的冲断褶皱带和乌拉根复式向斜构造系统 |
3.5 吾合沙鲁?乌恰喜山期前展式薄皮型断褶带与砂岩型铜(天青石)?铀矿床 |
3.6 帕米尔高原北缘前陆冲断褶皱带的北向南倾前锋带 |
4 讨论 |
4.1 区域成藏成矿与重大构造事件在物质?时间?空间上的耦合关系 |
4.2 区域成藏成矿规律与演化模式 |
5 结论 |
(9)内蒙古通辽地区流体作用与铀成矿关系研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题依据、目的及意义 |
1.1.1 选题依据 |
1.1.2 选题目的 |
1.1.3 选题意义 |
1.2 研究区概况 |
1.2.1 研究区范围 |
1.2.2 自然地理条件 |
1.3 国内外研究现状 |
1.3.1 砂岩型铀矿研究现状 |
1.3.2 成矿流体与铀成矿作用研究现状 |
1.4 研究内容及主要技术方案 |
1.4.1 研究内容 |
1.4.2 研究思路及技术路线 |
1.5 主要完成工作量 |
1.6 研究成果及创新点 |
1.6.1 取得的主要成果 |
1.6.2 创新点 |
2 区域地质概况 |
2.1 区域构造背景 |
2.2 盆地结构和构造特征 |
2.2.1 基底特征 |
2.2.2 盖层特征 |
2.2.3 断裂构造特征 |
2.3 岩浆活动 |
2.4 水文地质特征 |
2.4.1 水文地质单元划分 |
2.4.2 古水文地质旋回特征 |
3 铀矿床地质特征 |
3.1 铀矿化类型 |
3.2 矿床地质特征 |
3.2.1 铀源 |
3.2.2 含矿建造特征 |
3.2.3 氧化带发育特征 |
3.2.4 矿体形态 |
3.2.5 水文地质特征 |
3.2.6 铀存在形式 |
4 流体类型及其特征 |
4.1 流体类型 |
4.1.1 地下水 |
4.1.2 热流体 |
4.1.3 还原性流体 |
4.2 流体包裹体特征 |
4.2.1 岩相学特征 |
4.2.2 均一温度与盐度特征 |
4.2.3 流体包裹体成分 |
4.3 流体特征 |
4.4 流体组分及来源 |
5 流体作用及其与铀成矿关系 |
5.1 地下水作用与铀成矿关系 |
5.2 热流体作用与铀成矿关系 |
5.3 还原性流体作用与铀成矿关系 |
5.4 蚀变矿物组合序列与铀成矿阶段 |
6 主要结论与认识 |
参考文献 |
致谢 |
附录 |
(10)诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题依据、研究目的及意义 |
1.2 研究现状及存在问题 |
1.2.1 花岗岩型铀矿床的定义与分类 |
1.2.2 国外研究现状 |
1.2.3 国内研究现状 |
1.2.4 研究区研究现状及存在问题 |
1.3 研究内容和研究方法 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.4 主要实物工作量 |
1.5 主要研究成果及创新点 |
1.5.1 主要研究成果 |
1.5.2 创新点 |
2 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地层 |
2.2.1 新元古界(上部) |
2.2.2 下古生界 |
2.2.3 上古生界 |
2.2.4 中生界 |
2.2.5 新生界 |
2.3 区域构造 |
2.4 区域岩浆岩 |
2.5 区域矿产 |
2.6 本章小结 |
3 研究区地质概况 |
3.1 研究区地层 |
3.2 研究区构造 |
3.2.1 NE-NNE向构造 |
3.2.2 SN向构造 |
3.2.3 NEE-EW向构造 |
3.2.4 NW向构造 |
3.3 研究区岩浆岩 |
3.3.1 印支期 |
3.3.2 燕山早期 |
3.3.3 燕山晚期 |
3.3.4 其他脉岩 |
3.4 矿床资源概况 |
3.5 本章小结 |
4 铀矿床地质特征 |
4.1 铀资源分布与典型铀矿床概况 |
4.1.1 九龙径矿区 |
4.1.2 九曲岭矿区 |
4.1.3 九龙江矿区 |
4.1.4 石壁窝-木洞矿点 |
4.1.5 铀矿床(体)分布特征 |
4.2 铀矿化特征 |
4.2.1 铀矿石主要特征 |
4.2.2 矿物主要特征 |
4.3 产铀地质体特征 |
4.3.1 分析样品及分析方法 |
4.3.2 震旦-寒武系富铀地层 |
4.3.3 蚀变花岗岩及构造岩 |
4.4 围岩蚀变特征 |
4.5 矿物共生组合特征 |
4.5.1 石英 |
4.5.2 黑云母 |
4.5.3 绿泥石 |
4.5.4 黄铁矿 |
4.5.5 赤铁矿 |
4.5.6 萤石 |
4.6 本章小结 |
5 铀矿物特征与成矿年代学研究 |
5.1 铀矿物特征 |
5.2 铀成矿年代研究 |
5.2.1 样品处理及分析方法 |
5.2.2 数据计算方法 |
5.3 样品分析及计算结果 |
5.3.1 EMPA分析结果 |
5.3.2 LA-ICP-MS分析结果 |
5.4 沥青铀矿定年结果 |
5.5 讨论 |
5.5.1 定年方法的组合 |
5.5.2 同一铀矿体的不同成矿年龄 |
5.5.3 沥青铀矿成矿年龄地质意义 |
5.5.4 关于铀成矿年代学研究的思考 |
5.6 本章小结 |
6 成矿流体特征研究 |
6.1 成矿流体来源 |
6.1.1 样品特征 |
6.1.2 样品分析方法 |
6.1.3 方解石C-O同位素 |
6.1.4 石英H-O同位素 |
6.1.5 黄铁矿He-Ar同位素 |
6.2 流体包裹体 |
6.2.1 样品特征 |
6.2.2 样品分析方法 |
6.2.3 岩相学特征 |
6.2.4 盐度及均一温度 |
6.2.5 密度、压力及成矿深度 |
6.3 本章小结 |
7 成矿地质条件分析 |
7.1 铀成矿作用主要控制因素 |
7.1.1 地层条件 |
7.1.2 导控矿断裂 |
7.1.3 多期次岩浆活跃区 |
7.1.4 铀矿化类型分布 |
7.1.5 多期次成矿 |
7.2 找矿前景分析 |
7.2.1 宏观找矿标志 |
7.2.2 微观找矿标志 |
7.3 成矿模式 |
7.4 理论研究的意义、应用与发展 |
8 结论与问题 |
8.1 主要结论 |
8.2 存在问题 |
致谢 |
在攻读学位期间取得的科研成果 |
参考文献 |
附录 |
四、中国东南部火山岩型铀矿床碳同位素组成和∑CO_2来源研究(论文参考文献)
- [1]诸广南长江地区花岗岩型铀矿成矿流体作用研究[D]. 赵宇霆. 核工业北京地质研究院, 2021
- [2]新疆大长沟盆地下侏罗统八道湾组含油页岩系精细分析及古环境重建[D]. 王君贤. 吉林大学, 2021(01)
- [3]我国铀矿地质科技近十年的主要进展全文替换[J]. 李子颖,秦明宽,范洪海,蔡煜琦,程纪星,郭冬发,叶发旺,范光,刘晓阳. 矿物岩石地球化学通报, 2021(04)
- [4]相山火山盆地穿地壳岩浆系统的三维精细结构及动力学背景[D]. 余辉. 东华理工大学, 2021
- [5]相山铀矿田磷的地球化学特征及其铀成矿意义[D]. 高海东. 东华理工大学, 2021
- [6]新疆东准噶尔地区石墨矿成因及成矿规律[D]. 白建科. 西北大学, 2021(12)
- [7]粤东北仁差盆地铀多金属矿成矿地质特征与成矿预测[D]. 汤谨晖. 东华理工大学, 2020
- [8]新疆乌拉根中-新生代沉积盆地和前陆冲断褶皱带对铜铅锌-天青石-铀-煤成矿控制规律[J]. 方维萱,王磊,鲁佳,李天成,贾润幸. 大地构造与成矿学, 2020(05)
- [9]内蒙古通辽地区流体作用与铀成矿关系研究[D]. 章展铭. 核工业北京地质研究院, 2020(02)
- [10]诸广中段三九矿田花岗岩型铀矿床成矿地质特征研究[D]. 陈旭. 东华理工大学, 2020